Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package extracts tandem mass spectrometry (MS/MS) ID data from mzIdentML (leveraging the mzID package) or text files. After collating the search results from multiple datasets it assesses their identification quality and optimize filtering criteria to achieve the maximum number of identifications while not exceeding a specified false discovery rate. It also contains a number of utilities to explore the MS/MS results and assess missed and irregular enzymatic cleavages, mass measurement accuracy, etc.
Human Phenotype Ontology (HPO) was developed to create a consistent description of gene products with disease perspectives, and is essential for supporting functional genomics in disease context. Accurate disease descriptions can discover new relationships between genes and disease, and new functions for previous uncharacteried genes and alleles.
This package provides delayed computation of a matrix of scaled and centered values. The result is equivalent to using the scale function but avoids explicit realization of a dense matrix during block processing. This permits greater efficiency in common operations, most notably matrix multiplication.
This package provides an interactive tool for visualizing Illumina methylation array data. Both the 450k and EPIC array are supported.
DeconSeq is an R package for deconvolution of heterogeneous tissues based on mRNA-Seq data. It models the expression levels from heterogeneous cell populations in mRNA-Seq as the weighted average of expression from different constituting cell types and predicted cell type proportions of single expression profiles.
This package implements functions for simulation-based inference. In particular, it implements functions to perform likelihood inference from data summaries whose distributions are simulated. The package implements more advanced methods than the ones first described in: Rousset, Gouy, Almoyna and Courtiol (2017) <doi:10.1111/1755-0998.12627>.
Gcrma adjusts for background intensities in Affymetrix array data which include optical noise and non-specific binding (NSB). The main function gcrma converts background adjusted probe intensities to expression measures using the same normalization and summarization methods as a Robust Multiarray Average (RMA). Gcrma uses probe sequence information to estimate probe affinity to NSB. The sequence information is summarized in a more complex way than the simple GC content. Instead, the base types (A, T, G or C) at each position along the probe determine the affinity of each probe. The parameters of the position-specific base contributions to the probe affinity is estimated in an NSB experiment in which only NSB but no gene-specific binding is expected.
This package provides modified versions and novel implementation of functions for parallel evaluation, tailored to use with Bioconductor objects.
This package contains genome-wide annotations for Human, primarily based on mapping using Entrez Gene identifiers.
This package works analogous to BiocManager but for Docker images. Use the BiocDockerManager package to install and manage Docker images provided by the Bioconductor project.
EBImage provides general purpose functionality for image processing and analysis. In the context of (high-throughput) microscopy-based cellular assays, EBImage offers tools to segment cells and extract quantitative cellular descriptors. This allows the automation of such tasks using the R programming language and facilitates the use of other tools in the R environment for signal processing, statistical modeling, machine learning and visualization with image data.
This package implements sampling, iteration, and input of FASTQ files. It includes functions for filtering and trimming reads, and for generating a quality assessment report. Data are represented as DNAStringSet-derived objects, and easily manipulated for a diversity of purposes. The package also contains legacy support for early single-end, ungapped alignment formats.
This package speeds up the derfinder package when using multiple cores. It is particularly useful when using BiocParallel and it helps reduce the time spent loading the full derfinder package when running the F-statistics calculation in parallel.
This package provides a convenient way to analyze and visualize PICRUSt2 output with pre-defined plots and functions. It allows for generating statistical plots about microbiome functional predictions and offers customization options. It features a one-click option for creating publication-level plots, saving time and effort in producing professional-grade figures. It streamlines the PICRUSt2 analysis and visualization process.
This package provides a flexible method for fitting regression models that can be used to find genes that are differentially expressed along one or multiple lineages in a trajectory. Based on the fitted models, it uses a variety of tests suited to answer different questions of interest, e.g. the discovery of genes for which expression is associated with pseudotime, or which are differentially expressed (in a specific region) along the trajectory. It fits a negative binomial generalized additive model (GAM) for each gene, and performs inference on the parameters of the GAM.
XBSeq is a novel algorithm for testing RNA-seq differential expression (DE), where a statistical model was established based on the assumption that observed signals are the convolution of true expression signals and sequencing noises. The mapped reads in non-exonic regions are considered as sequencing noises, which follows a Poisson distribution. Given measurable observed signal and background noise from RNA-seq data, true expression signals, assuming governed by the negative binomial distribution, can be delineated and thus the accurate detection of differential expressed genes.
This package defines data structures for linkage disequilibrium (LD) measures in populations. Its purpose is to simplify handling of existing population-level data for the purpose of flexibly defining LD blocks.
This package provides Bayesian shrinkage estimators for effect sizes for a variety of GLM models, using approximation of the posterior for individual coefficients.
This package reads Bruker NMR data directories both zipped and unzipped. It provides automated and efficient signal processing for untargeted NMR metabolomics. It is able to interpolate the samples, detect outliers, exclude regions, normalize, detect peaks, align the spectra, integrate peaks, manage metadata and visualize the spectra. After spectra processing, it can apply multivariate analysis on extracted data. Efficient plotting with 1-D data is also available. Basic reading of 1D ACD/Labs exported JDX samples is also available.
This is an R package for interfacing with the BIOM format. This package includes basic tools for reading biom-format files, accessing and subsetting data tables from a biom object (which is more complex than a single table), as well as limited support for writing a biom-object back to a biom-format file. The design of this API is intended to match the Python API and other tools included with the biom-format project, but with a decidedly "R flavor" that should be familiar to R users. This includes S4 classes and methods, as well as extensions of common core functions/methods.
This package makes GREAT (Genomic Regions Enrichment of Annotations Tool) analysis automatic by constructing a HTTP POST request according to user's input and automatically retrieving results from GREAT web server.
This package provides quantitative variant callers for detecting subclonal mutations in ultra-deep (>=100x coverage) sequencing experiments. The deepSNV algorithm is used for a comparative setup with a control experiment of the same loci and uses a beta-binomial model and a likelihood ratio test to discriminate sequencing errors and subclonal SNVs. The shearwater algorithm computes a Bayes classifier based on a beta-binomial model for variant calling with multiple samples for precisely estimating model parameters - such as local error rates and dispersion - and prior knowledge, e.g. from variation data bases such as COSMIC.
This package is an R implementation for fully unsupervised deconvolution of complex tissues. DebCAM provides basic functions to perform unsupervised deconvolution on mixture expression profiles by CAM and some auxiliary functions to help understand the subpopulation- specific results. It also implements functions to perform supervised deconvolution based on prior knowledge of molecular markers, S matrix or A matrix. Combining molecular markers from CAM and from prior knowledge can achieve semi-supervised deconvolution of mixtures.
This package is used to detect combination of genomic coordinates falling within a user defined window size along with user defined overlap between identified neighboring clusters. It can be used for genomic data where the clusters are built on a specific chromosome or specific strand. Clustering can be performed with a "greedy" option allowing thus the presence of additional sites within the allowed window size.