Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Shiny app to interactively visualize hierarchical clustering with prototypes. For details on hierarchical clustering with prototypes, see Bien and Tibshirani (2011) <doi:10.1198/jasa.2011.tm10183>. This package currently launches the application.
Send requests to the PurpleAir Application Programming Interface (API; <https://community.purpleair.com/c/data/api/18>). Check a PurpleAir API key and get information about the related organization. Download real-time data from a single PurpleAir sensor or many sensors by sensor identifier, geographical bounding box, or time since modified. Download historical data from a single sensor. Stream real time data from monitors on a local area network.
The merits of TIMESAT and phenopix are adopted. Besides, a simple and growing season dividing method and a practical snow elimination method based on Whittaker were proposed. 7 curve fitting methods and 4 phenology extraction methods were provided. Parameters boundary are considered for every curve fitting methods according to their ecological meaning. And optimx is used to select best optimization method for different curve fitting methods. Reference: Kong, D., (2020). R package: A state-of-the-art Vegetation Phenology extraction package, phenofit version 0.3.1, <doi:10.5281/zenodo.5150204>; Kong, D., Zhang, Y., Wang, D., Chen, J., & Gu, X. (2020). Photoperiod Explains the Asynchronization Between Vegetation Carbon Phenology and Vegetation Greenness Phenology. Journal of Geophysical Research: Biogeosciences, 125(8), e2020JG005636. <doi:10.1029/2020JG005636>; Kong, D., Zhang, Y., Gu, X., & Wang, D. (2019). A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 155, 13â 24; Zhang, Q., Kong, D., Shi, P., Singh, V.P., Sun, P., 2018. Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982â 2013). Agric. For. Meteorol. 248, 408â 417. <doi:10.1016/j.agrformet.2017.10.026>.
This package provides a collection of miscellaneous functions for passive acoustics. Much of the content here is adapted to R from code written by other people. If you have any ideas of functions to add, please contact Taiki Sakai.
Streamline the management, creation, and formatting of panel data from the Panel Study of Income Dynamics ('PSID') <https://psidonline.isr.umich.edu> using this user-friendly tool. Simply define variable names and input code book details directly from the PSID official website, and this toolbox will efficiently facilitate the data preparation process, transforming raw PSID files into a well-organized format ready for further analysis.
Mixtures of Poisson Generalized Linear Models for high dimensional count data clustering. The (multivariate) responses can be partitioned into set of blocks. Three different parameterizations of the linear predictor are considered. The models are estimated according to the EM algorithm with an efficient initialization scheme <doi:10.1016/j.csda.2014.07.005>.
Conduct dsep tests (piecewise SEM) of a directed, or mixed, acyclic graph without latent variables (but possibly with implicitly marginalized or conditioned latent variables that create dependent errors) based on linear, generalized linear, or additive modelswith or without a nesting structure for the data. Also included are functions to do desp tests step-by-step,exploratory path analysis, and Monte Carlo X2 probabilities. This package accompanies Shipley, B, (2026).Cause and Correlation in Biology: A User's Guide to Path Analysis, StructuralEquations and Causal Inference (3rd edition). Cambridge University Press.
High Dynamic Range (HDR) images support a large range in luminosity between the lightest and darkest regions of an image. To capture this range, data in HDR images is often stored as floating point numbers and in formats that capture more data and channels than standard image types. This package supports reading and writing two types of HDR images; PFM (Portable Float Map) and OpenEXR images. HDR images can be converted to lower dynamic ranges (for viewing) using tone-mapping. A number of tone-mapping algorithms are included which are based on Reinhard (2002) "Photographic tone reproduction for digital images" <doi:10.1145/566654.566575>.
Aims to utilize model-based clustering (unsupervised) for high dimensional and ultra large data, especially in a distributed manner. The code employs pbdMPI to perform a expectation-gathering-maximization algorithm for finite mixture Gaussian models. The unstructured dispersion matrices are assumed in the Gaussian models. The implementation is default in the single program multiple data programming model. The code can be executed through pbdMPI and MPI implementations such as OpenMPI and MPICH'. See the High Performance Statistical Computing website <https://snoweye.github.io/hpsc/> for more information, documents and examples.
An API wrapper around the ProPublica API <https://projects.propublica.org/api-docs/congress-api/> for U.S. Congressional Bills. Users can include their API key, U.S. Congress, branch, and offset ranges, to return a dataframe of all results within those parameters. This package is different from the RPublica package because it is for the ProPublica U.S. Congress data API, and the RPublica package is for the Nonprofit Explorer, Forensics, and Free the Files data APIs.
The Prognostic Regression Offsets with Propagation of ERrors (for Treatment Effect Estimation) package facilitates direct adjustment for experiments and observational studies that is compatible with a range of study designs and covariance adjustment strategies. It uses explicit specification of clusters, blocks and treatment allocations to furnish probability of assignment-based weights targeting any of several average treatment effect parameters, and for standard error calculations reflecting these design parameters. For covariance adjustment of its Hajek and (one-way) fixed effects estimates, it enables offsetting the outcome against predictions from a dedicated covariance model, with standard error calculations propagating error as appropriate from the covariance model.
This package provides functions for prior and likelihood sensitivity analysis in Bayesian models. Currently it implements methods to determine the sensitivity of the posterior to power-scaling perturbations of the prior and likelihood.
This package provides functions to process, format and store ActiGraph GT1M and GT3X accelerometer data.
Package for learning and evaluating (subgroup) policies via doubly robust loss functions. Policy learning methods include doubly robust blip/conditional average treatment effect learning and sequential policy tree learning. Methods for (subgroup) policy evaluation include doubly robust cross-fitting and online estimation/sequential validation. See Nordland and Holst (2022) <doi:10.48550/arXiv.2212.02335> for documentation and references.
Load the Just Another Gibbs Sampling (JAGS) module pexm'. The module provides the tools to work with the Piecewise Exponential (PE) distribution in a Bayesian model with the corresponding Markov Chain Monte Carlo algorithm (Gibbs Sampling) implemented via JAGS. Details about the module implementation can be found in Mayrink et al. (2021) <doi:10.18637/jss.v100.i08>.
Bindings for additional regression models for use with the parsnip package, including ordinary and spare partial least squares models for regression and classification (Rohart et al (2017) <doi:10.1371/journal.pcbi.1005752>).
The first goal of this package is to provide a multitude of tree models, i.e., functions that generate rooted binary trees with a given number of leaves. Second, the package allows for an easy evaluation and comparison of tree shape statistics by estimating their power to differentiate between different tree models. Please note that this R package was developed alongside the manuscript "Tree balance in phylogenetic models" by S. J. Kersting, K. Wicke, and M. Fischer (2024) <doi:10.48550/arXiv.2406.05185>, which provides further background and the respective mathematical definitions. This project was supported by the project ArtIGROW, which is a part of the WIR!-Alliance ArtIFARM â Artificial Intelligence in Farming funded by the German Federal Ministry of Education and Research (No. 03WIR4805).
This package performs demographic, bifurcation and evolutionary analysis of physiologically structured population models, which is a class of models that consistently translates continuous-time models of individual life history to the population level. A model of individual life history has to be implemented specifying the individual-level functions that determine the life history, such as development and mortality rates and fecundity. M.A. Kirkilionis, O. Diekmann, B. Lisser, M. Nool, B. Sommeijer & A.M. de Roos (2001) <doi:10.1142/S0218202501001264>. O.Diekmann, M.Gyllenberg & J.A.J.Metz (2003) <doi:10.1016/S0040-5809(02)00058-8>. A.M. de Roos (2008) <doi:10.1111/j.1461-0248.2007.01121.x>.
There are 4 possible methods: "ExhaustiveSearch"; "ExhaustivePhi"; "ClusteringSearch"; and "ClusteringPhi". "ExhaustiveSearch"--> gives you the best phage cocktail from a phage-bacteria infection network. It checks different phage cocktail sizes from 1 to 7 and only stops before if it lyses all bacteria. Other option is when users have decided not to obtain a phage cocktail size higher than a limit value. "ExhaustivePhi"--> firstly, it finds Phi out. Phi is a formula indicating the necessary phage cocktail size. Phi needs nestedness temperature and fill, which are internally calculated. This function will only look for the best combination (phage cocktail) with a Phi size. "ClusteringSearch"--> firstly, an agglomerative hierarchical clustering using Ward's algorithm is calculated for phages. They will be clustered according to bacteria lysed by them. PhageCocktail() chooses how many clusters are needed in order to select 1 phage per cluster. Using the phages selected during the clustering, it checks different phage cocktail sizes from 1 to 7 and only stops before if it lyses all bacteria. Other option is when users have decided not to obtain a phage cocktail size higher than a limit value. "ClusteringPhi"--> firstly, an agglomerative hierarchical clustering using Ward's algorithm is calculated for phages. They will be clustered according to bacteria lysed by them. PhageCocktail() chooses how many clusters are needed in order to select 1 phage per cluster. Once the function has one phage per cluster, it calculates Phi. If the number of clusters is less than Phi number, it will be changed to obtain, as minimum, this quantity of candidates (phages). Then, it calculates the best combination of Phi phages using those selected during the clustering with Ward algorithm. If you use PhageCocktail, please cite it as: "PhageCocktail: An R Package to Design Phage Cocktails from Experimental Phage-Bacteria Infection Networks". Marà a Victoria Dà az-Galián, Miguel A. Vega-Rodrà guez, Felipe Molina. Computer Methods and Programs in Biomedicine, 221, 106865, Elsevier Ireland, Clare, Ireland, 2022, pp. 1-9, ISSN: 0169-2607. <doi:10.1016/j.cmpb.2022.106865>.
Tabular data from statistical institutes and agencies are mostly confidential and must be protected prior to publications. The cell-key method is a post-tabular Statistical Disclosure Control perturbation technique that adds random noise to tabular data. The statistical properties of the perturbations are defined by some noise probability distributions - also referred to as perturbation tables. This tool can be used to create the perturbation tables based on a maximum entropy approach as described for example in Giessing (2016) <doi:10.1007/978-3-319-45381-1_18>. The perturbation tables created can finally be used to apply a cell-key method to frequency count or magnitude tables.
Fit linear splines to species time series to detect population growth scenarios based on Hyndman, R J and Mesgaran, M B and Cousens, R D (2015) <doi:10.1007/s10530-015-0962-8>.
Precision agriculture spatial data depuration and homogeneous zones (management zone) delineation. The package includes functions that performs protocols for data cleaning management zone delineation and zone comparison; protocols are described in Paccioretti et al., (2020) <doi:10.1016/j.compag.2020.105556>.
Calculates the percentage coefficient of variation (CV) for mass spectrometry-based proteomic data. The CV can be calculated with the traditional formula for raw (non log transformed) intensity data, or log transformed data.
Computes the Danish Pesticide Load Indicator as described in Kudsk et al. (2018) <doi:10.1016/j.landusepol.2017.11.010> and Moehring et al. (2019) <doi:10.1016/j.scitotenv.2018.07.287> for pesticide use data. Additionally offers the possibility to directly link pesticide use data to pesticide properties given access to the Pesticide properties database (Lewis et al., 2016) <doi:10.1080/10807039.2015.1133242>.