Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Analysis of preprocessed dramatic texts, with respect to literary research. The package provides functions to analyze and visualize information about characters, stage directions, the dramatic structure and the text itself. The dramatic texts are expected to be in CSV format, which can be installed from within the package, sample texts are provided. The package and the reasoning behind it are described in Reiter et al. (2017) <doi:10.18420/in2017_119>.
In tumor tissue, underlying genomic instability can lead to DNA copy number alterations, e.g., copy number gains or losses. Sporadic copy number alterations occur randomly throughout the genome, whereas recurrent alterations are observed in the same genomic region across multiple independent samples, perhaps because they provide a selective growth advantage. Here we use cyclic shift permutations to identify recurrent copy number alterations in a single cohort or recurrent copy number differences in two cohorts based on a common set of genomic markers. Additional functionality is provided to perform downstream analyses, including the creation of summary files and graphics. DiNAMIC.Duo builds upon the original DiNAMIC package of Walter et al. (2011) <doi:10.1093/bioinformatics/btq717> and leverages the theory developed in Walter et al. (2015) <doi:10.1093/biomet/asv046>. An article describing DiNAMIC.Duo by Walter et al. (2022) can be found at <doi: 10.1093/bioinformatics/btac542>.
Data whitening is a widely used preprocessing step to remove correlation structure since statistical models often assume independence. Here we use a probabilistic model of the observed data to apply a whitening transformation. This Gaussian Inverse Wishart Empirical Bayes model substantially reduces computational complexity, and regularizes the eigen-values of the sample covariance matrix to improve out-of-sample performance.
Perform nonparametric Bayesian analysis using Dirichlet processes without the need to program the inference algorithms. Utilise included pre-built models or specify custom models and allow the dirichletprocess package to handle the Markov chain Monte Carlo sampling. Our Dirichlet process objects can act as building blocks for a variety of statistical models including and not limited to: density estimation, clustering and prior distributions in hierarchical models. See Teh, Y. W. (2011) <https://www.stats.ox.ac.uk/~teh/research/npbayes/Teh2010a.pdf>, among many other sources.
This package provides a wrapper for the DeepL API <https://developers.deepl.com/docs>, a web service for translating texts between different languages. A DeepL API developer account is required to use the service (see <https://www.deepl.com/pro#developer>).
Given a set of predictive quantiles from a distribution, estimate the distribution and create `d`, `p`, `q`, and `r` functions to evaluate its density function, distribution function, and quantile function, and generate random samples. On the interior of the provided quantiles, an interpolation method such as a monotonic cubic spline is used; the tails are approximated by a location-scale family.
Use leaf physiognomic methods to reconstruct mean annual temperature (MAT), mean annual precipitation (MAP), and leaf dry mass per area (Ma), along with other useful quantitative leaf traits. Methods in this package described in Lowe et al. (in review).
Compare detrital zircon suites by uploading univariate, U-Pb age, or bivariate, U-Pb age and Lu-Hf data, in a shiny'-based user-interface. Outputs publication quality figures using ggplot2', and tables of statistics currently in use in the detrital zircon geochronology community.
Estimate common causal parameters using double/debiased machine learning as proposed by Chernozhukov et al. (2018) <doi:10.1111/ectj.12097>. ddml simplifies estimation based on (short-)stacking as discussed in Ahrens et al. (2024) <doi:10.1002/jae.3103>, which leverages multiple base learners to increase robustness to the underlying data generating process.
This package provides several data sets for use with discrete statistical tests and discrete multiple testing procedures. Some of them are also available as a four-column version, so that each row represents a 2x2 table.
This package implements survival proximity score matching in multi-state survival models. Includes tools for simulating survival data and estimating transition-specific coxph models with frailty terms. The primary methodological work on multistate censored data modeling using propensity score matching has been published by Bhattacharjee et al.(2024) <doi:10.1038/s41598-024-54149-y>.
For identifying, estimating, and plotting descriptive multidimensional item response theory models, restricted to 3D and dichotomous or polytomous data that fit the two-parameter logistic model or the graded response model. The method is foremost explorative and centered around the plot function that exposes item characteristics and constructs, represented by vector arrows, located in a three-dimensional interactive latent space. The results can be useful for item-level analysis as well as test development.
Utilities for handling dates and times, such as selecting particular days of the week or month, formatting timestamps as required by RSS feeds, or converting timestamp representations of other software (such as MATLAB and Excel') to R. The package is lightweight (no dependencies, pure R implementations) and relies only on R's standard classes to represent dates and times ('Date and POSIXt'); it aims to provide efficient implementations, through vectorisation and the use of R's native numeric representations of timestamps where possible.
Phase I/II adaptive dose-finding design for single-agent Molecularly Targeted Agent (MTA), according to the paper "Phase I/II Dose-Finding Design for Molecularly Targeted Agent: Plateau Determination using Adaptive Randomization", Riviere Marie-Karelle et al. (2016) <doi:10.1177/0962280216631763>.
Fast functions for effective sample size, weighted multivariate mean, variance, and quantile computation, and weight diagnostic plot for generic importance sampling type or other probability weighted samples.
This package provides a collection of functions to preprocess data and organize them in a format amenable to use by chevron.
Estimation and testing methods for dependently truncated data. Semi-parametric methods are based on Emura et al. (2011)<Stat Sinica 21:349-67>, Emura & Wang (2012)<doi:10.1016/j.jmva.2012.03.012>, and Emura & Murotani (2015)<doi:10.1007/s11749-015-0432-8>. Parametric approaches are based on Emura & Konno (2012)<doi:10.1007/s00362-014-0626-2> and Emura & Pan (2017)<doi:10.1007/s00362-017-0947-z>. A regression approach is based on Emura & Wang (2016)<doi:10.1007/s10463-015-0526-9>. Quasi-independence tests are based on Emura & Wang (2010)<doi:10.1016/j.jmva.2009.07.006>. Right-truncated data for Japanese male centenarians are given by Emura & Murotani (2015)<doi:10.1007/s11749-015-0432-8>.
This package provides methods for analyzing population dynamics and movement tracks simulated using the DEPONS model <https://www.depons.eu> (v.3.0), for manipulating input raster files, shipping routes and for analyzing sound propagated from ships.
Implementation of three methods based on the diversity forest (DF) algorithm (Hornung, 2022, <doi:10.1007/s42979-021-00920-1>), a split-finding approach that enables complex split procedures in random forests. The package includes: 1. Interaction forests (IFs) (Hornung & Boulesteix, 2022, <doi:10.1016/j.csda.2022.107460>): Model quantitative and qualitative interaction effects using bivariable splitting. Come with the Effect Importance Measure (EIM), which can be used to identify variable pairs that have well-interpretable quantitative and qualitative interaction effects with high predictive relevance. 2. Two random forest-based variable importance measures (VIMs) for multi-class outcomes: the class-focused VIM, which ranks covariates by their ability to distinguish individual outcome classes from the others, and the discriminatory VIM, which measures overall covariate influence irrespective of class-specific relevance. 3. The basic form of diversity forests that uses conventional univariable, binary splitting (Hornung, 2022). Except for the multi-class VIMs, all methods support categorical, metric, and survival outcomes. The package includes visualization tools for interpreting the identified covariate effects. Built as a fork of the ranger R package (main author: Marvin N. Wright), which implements random forests using an efficient C++ implementation.
Estimates the conditional association between an exposure and an outcome given covariates. Three methods are implemented: O-estimation, where a nuisance model for the association between the covariates and the outcome is used; E-estimation where a nuisance model for the association between the covariates and the exposure is used, and doubly robust (DR) estimation where both nuisance models are used. In DR-estimation, the estimates will be consistent when at least one of the nuisance models is correctly specified, not necessarily both. For more information, see Zetterqvist and Sjölander (2015) <doi:10.1515/em-2014-0021>.
Differential Analysis of short RNA transcripts that can be modeled by either Poisson or Negative binomial distribution. The statistical methodology implemented in this package is based on the random selection of references genes (Desaulle et al. (2021) <arXiv:2103.09872>).
The dentomedical package provides a comprehensive suite of tools for medical and dental research. It includes automated descriptive statistics, bivariate analysis with intelligent test selection, logistic regression, and diagnostic accuracy assessment. All functions generate publication-ready tables using flextable', ensuring reproducibility and clarity suitable for manuscripts, reports, and clinical research workflows.
Statistical tests and test statistics to identify events in a dataset that are dragon kings (DKs). The statistical methods in this package were reviewed in Wheatley & Sornette (2015) <doi:10.2139/ssrn.2645709>.
Implementation of the Density Ratio Permutation Test for testing the goodness-of-fit of a hypothesised ratio of two densities, as described in Bordino and Berrett (2025) <doi:10.48550/arXiv.2505.24529>.