Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Diffusion Weighted Imaging (DWI) is a Magnetic Resonance Imaging modality, that measures diffusion of water in tissues like the human brain. The package contains R-functions to process diffusion-weighted data. The functionality includes diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), modeling for high angular resolution diffusion weighted imaging (HARDI) using Q-ball-reconstruction and tensor mixture models, several methods for structural adaptive smoothing including POAS and msPOAS, and a streamline fiber tracking for tensor and tensor mixture models. The package provides functionality to manipulate and visualize results in 2D and 3D.
Implement download buttons in HTML output from rmarkdown without the need for runtime:shiny'.
Utility functions used for the R package development infrastructure inside the data integration centers ('DIZ') to standardize and facilitate repetitive tasks such as setting up a database connection or issuing notification messages and to avoid redundancy.
Efficient methods for computing distance covariance and relevant statistics. See Székely et al.(2007) <doi:10.1214/009053607000000505>; Székely and Rizzo (2013) <doi:10.1016/j.jmva.2013.02.012>; Székely and Rizzo (2014) <doi:10.1214/14-AOS1255>; Huo and Székely (2016) <doi:10.1080/00401706.2015.1054435>.
This package performs hypothesis tests concerning a regression function in a least-squares model, where the null is a parametric function, and the alternative is the union of large-dimensional convex polyhedral cones. See Bodhisattva Sen and Mary C Meyer (2016) <doi:10.1111/rssb.12178> for more details.
This package provides methods for (auto)covariance/correlation function estimation in change point regression with stationary errors circumventing the pre-estimation of the underlying signal of the observations. Generic, first-order, (m+1)-gapped, difference-based autocovariance function estimator is based on M. Levine and I. Tecuapetla-Gómez (2023) <doi:10.48550/arXiv.1905.04578>. Bias-reducing, second-order, (m+1)-gapped, difference-based estimator is based on I. Tecuapetla-Gómez and A. Munk (2017) <doi:10.1111/sjos.12256>. Robust autocovariance estimator for change point regression with autoregressive errors is based on S. Chakar et al. (2017) <doi:10.3150/15-BEJ782>. It also includes a general projection-based method for covariance matrix estimation.
Bayesian factor models are effective tools for dimension reduction. This is especially applicable to multivariate large-scale datasets. It allows researchers to understand the latent factors of the data which are the linear or non-linear combination of the variables. Dynamic Intrinsic Conditional Autocorrelative Priors (ICAR) Spatiotemporal Factor Models DIFM package provides function to run Markov Chain Monte Carlo (MCMC), evaluation methods and visual plots from Shin and Ferreira (2023)<doi:10.1016/j.spasta.2023.100763>. Our method is a class of Bayesian factor model which can account for spatial and temporal correlations. By incorporating these correlations, the model can capture specific behaviors and provide predictions.
Estimates fractional trophic level from quantitative and qualitative diet data and calculates electivity indices in R. Borstein (2020) <doi:10.1007/s10750-020-04417-5>.
This package provides efficient Markov chain Monte Carlo (MCMC) algorithms for dynamic shrinkage processes, which extend global-local shrinkage priors to the time series setting by allowing shrinkage to depend on its own past. These priors yield locally adaptive estimates, useful for time series and regression functions with irregular features. The package includes full MCMC implementations for trend filtering using dynamic shrinkage on signal differences, producing locally constant or linear fits with adaptive credible bands. Also included are models with static shrinkage and normal-inverse-Gamma priors for comparison. Additional tools cover dynamic regression with time-varying coefficients and B-spline models with shrinkage on basis differences, allowing for flexible curve-fitting with unequally spaced data. Some support for heteroscedastic errors, outlier detection, and change point estimation. Methods in this package are described in Kowal et al. (2019) <doi:10.1111/rssb.12325>, Wu et al. (2024) <doi:10.1080/07350015.2024.2362269>, Schafer and Matteson (2024) <doi:10.1080/00401706.2024.2407316>, and Cho and Matteson (2024) <doi:10.48550/arXiv.2408.11315>.
This package provides methods to estimate the optimal treatment regime among all linear regimes via smoothed estimation methods, and construct element-wise confidence intervals for the optimal linear treatment regime vector, as well as the confidence interval for the optimal value via wild bootstrap procedures, if the population follows treatments recommended by the optimal linear regime. See more details in: Wu, Y. and Wang, L. (2021), "Resampling-based Confidence Intervals for Model-free Robust Inference on Optimal Treatment Regimes", Biometrics, 77: 465â 476, <doi:10.1111/biom.13337>.
Shows you which rows have changed between two data frames with the same column structure. Useful for diffing slowly mutating data.
Efficient covariate-adjusted estimators of quantities that are useful for establishing the effects of treatments on ordinal outcomes.
This function provides an interface between Matlab and R in facilitating fast processing for reading and saving DICOM images.
This package provides tools to sort DICOM-format medical image files, and convert them to NIfTI-1 format.
Decomposing value added growth into explanatory factors. A cost constrained value added function is defined to specify the production frontier. Industry estimates can also be aggregated using a weighted average approach. Details about the methodology and data can be found in Diewert and Fox (2018) <doi:10.1093/oxfordhb/9780190226718.013.19> and Zeng, Parsons, Diewert and Fox (2018) <https://www.business.unsw.edu.au/research-site/centreforappliedeconomicresearch-site/Documents/emg2018-6_SZeng_EMG-Slides.pdf>.
Supporting the quantitative analysis of binary welfare based decision making processes using Monte Carlo simulations. Decision support is given on two levels: (i) The actual decision level is to choose between two alternatives under probabilistic uncertainty. This package calculates the optimal decision based on maximizing expected welfare. (ii) The meta decision level is to allocate resources to reduce the uncertainty in the underlying decision problem, i.e to increase the current information to improve the actual decision making process. This problem is dealt with using the Value of Information Analysis. The Expected Value of Information for arbitrary prospective estimates can be calculated as well as Individual Expected Value of Perfect Information. The probabilistic calculations are done via Monte Carlo simulations. This Monte Carlo functionality can be used on its own.
An extension to the DPQ package with computations for DPQ (Density (pdf), Probability (cdf) and Quantile) functions, where the functions here partly use the Rmpfr package and hence the underlying MPFR and GMP C libraries.
The dataset package helps create semantically rich, machine-readable, and interoperable datasets in R. It extends tidy data frames with metadata that preserves meaning, improves interoperability, and makes datasets easier to publish, exchange, and reuse in line with ISO and W3C standards.
Function to create forest plots. Functions to use posterior samples from Bayesian bivariate meta-analysis model, Bayesian hierarchical summary receiver operating characteristic (HSROC) meta-analysis model or Bayesian latent class (LC) meta-analysis model to create Summary Receiver Operating Characteristic (SROC) plots using methods described by Harbord et al (2007)<doi:10.1093/biostatistics/kxl004>.
S4-classes for setting up a coherent framework for simulation within the distr family of packages.
Item focussed recursive partitioning for simultaneous selection of items and variables that induce Differential Item Functioning (DIF) in dichotomous or polytomous items.
This package provides a weekly, monthly, yearly summary of dengue cases by state/ province/ country.
Use leaf physiognomic methods to reconstruct mean annual temperature (MAT), mean annual precipitation (MAP), and leaf dry mass per area (Ma), along with other useful quantitative leaf traits. Methods in this package described in Lowe et al. (in review).
Data screening is an important first step of any statistical analysis. dataReporter auto generates a customizable data report with a thorough summary of the checks and the results that a human can use to identify possible errors. It provides an extendable suite of test for common potential errors in a dataset. See Petersen AH, Ekstrøm CT (2019). "dataMaid: Your Assistant for Documenting Supervised Data Quality Screening in R." _Journal of Statistical Software_, *90*(6), 1-38 <doi:10.18637/jss.v090.i06> for more information.