Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Permute treatment labels for taxa and environmental gradients to generate an empirical distribution of change points. This is an extension for the TITAN2 package <https://cran.r-project.org/package=TITAN2>.
Check available classification and regression data sets from the PMLB repository and download them. The PMLB repository (<https://github.com/EpistasisLab/pmlbr>) contains a curated collection of data sets for evaluating and comparing machine learning algorithms. These data sets cover a range of applications, and include binary/multi-class classification problems and regression problems, as well as combinations of categorical, ordinal, and continuous features. There are currently over 150 datasets included in the PMLB repository.
The portmanteau local feature discriminant approach first identifies the local discriminant features and their differential structures, then constructs the discriminant rule by pooling the identified local features together. This method is applicable to high-dimensional matrix-variate data. See the paper by Xu, Luo and Chen (2023, <doi:10.1007/s13171-021-00255-2>).
This is a data only package, that provides distances from a paper plane experiment.
We propose a pair of summary measures for the predictive power of a prediction function based on a regression model. The regression model can be linear or nonlinear, parametric, semi-parametric, or nonparametric, and correctly specified or mis-specified. The first measure, R-squared, is an extension of the classical R-squared statistic for a linear model, quantifying the prediction function's ability to capture the variability of the response. The second measure, L-squared, quantifies the prediction function's bias for predicting the mean regression function. When used together, they give a complete summary of the predictive power of a prediction function. Please refer to Gang Li and Xiaoyan Wang (2016) <arXiv:1611.03063> for more details.
This package creates PRISMA <http://prisma-statement.org/> diagram from a minimal dataset of included and excluded studies and allows for more custom diagrams. PRISMA diagrams are used to track the identification, screening, eligibility, and inclusion of studies in a systematic review.
Set the R prompt dynamically, from a function. The package contains some examples to include various useful dynamic information in the prompt: the status of the last command (success or failure); the amount of memory allocated by the current R process; the name of the R package(s) loaded by pkgload and/or devtools'; various git information: the name of the active branch, whether it is dirty, if it needs pushes pulls. You can also create your own prompt if you don't like the predefined examples.
Computes pseudo-realizations from the posterior distribution of a Gaussian Process (GP) with the method described in Azzimonti et al. (2016) <doi:10.1137/141000749>. The realizations are obtained from simulations of the field at few well chosen points that minimize the expected distance in measure between the true excursion set of the field and the approximate one. Also implements a R interface for (the main function of) Distance Transform of sampled Functions (<https://cs.brown.edu/people/pfelzens/dt/index.html>).
Descriptive statistics (mean rank, pairwise frequencies, and marginal matrix), Analytic Hierarchy Process models (with Saaty's and Koczkodaj's inconsistencies), probability models (Luce models, distance-based models, and rank-ordered logit models) and visualization with multidimensional preference analysis for ranking data are provided. Current, only complete rankings are supported by this package.
Parse messy geographic coordinates from various character formats to decimal degree numeric values. Parse coordinates into their parts (degree, minutes, seconds); calculate hemisphere from coordinates; pull out individually degrees, minutes, or seconds; add and subtract degrees, minutes, and seconds. C++ code herein originally inspired from code written by Jeffrey D. Bogan, but then completely re-written.
Several tests of quantitative palaeoenvironmental reconstructions from microfossil assemblages, including the null model tests of the statistically significant of reconstructions developed by Telford and Birks (2011) <doi:10.1016/j.quascirev.2011.03.002>, and tests of the effect of spatial autocorrelation on transfer function model performance using methods from Telford and Birks (2009) <doi:10.1016/j.quascirev.2008.12.020> and Trachsel and Telford (2016) <doi:10.5194/cp-12-1215-2016>. Age-depth models with generalized mixed-effect regression from Heegaard et al (2005) <doi:10.1191/0959683605hl836rr> are also included.
In Shiny apps, it is sometimes useful to store information on a particular item in a tooltip. Prompter allows you to easily create such tooltips, using Hint.css'.
Fits Bayesian mixture models to estimate marker dosage for dominant markers in autopolyploids using JAGS (1.0 or greater) as outlined in Baker et al "Bayesian estimation of marker dosage in sugarcane and other autopolyploids" (2010, <doi:10.1007/s00122-010-1283-z>). May be used in conjunction with polySegratio for simulation studies and comparison with standard methods.
Features unstructured, structured and reverse geocoding using the photon geocoding API <https://photon.komoot.io/>. Facilitates the setup of local photon instances to enable offline geocoding.
Use phenotype risk scores based on linked clinical and genetic data to study Mendelian disease and rare genetic variants. See Bastarache et al. 2018 <doi:10.1126/science.aal4043>.
This package contains functions to compute and plot confidence distributions, confidence densities, p-value functions and s-value (surprisal) functions for several commonly used estimates. Instead of just calculating one p-value and one confidence interval, p-value functions display p-values and confidence intervals for many levels thereby allowing to gauge the compatibility of several parameter values with the data. These methods are discussed by Infanger D, Schmidt-Trucksäss A. (2019) <doi:10.1002/sim.8293>; Poole C. (1987) <doi:10.2105/AJPH.77.2.195>; Schweder T, Hjort NL. (2002) <doi:10.1111/1467-9469.00285>; Bender R, Berg G, Zeeb H. (2005) <doi:10.1002/bimj.200410104> ; Singh K, Xie M, Strawderman WE. (2007) <doi:10.1214/074921707000000102>; Rothman KJ, Greenland S, Lash TL. (2008, ISBN:9781451190052); Amrhein V, Trafimow D, Greenland S. (2019) <doi:10.1080/00031305.2018.1543137>; Greenland S. (2019) <doi:10.1080/00031305.2018.1529625> and Rafi Z, Greenland S. (2020) <doi:10.1186/s12874-020-01105-9>.
Screens and sorts phylogenetic trees in both traditional and extended Newick format. Allows for the fast and flexible screening (within a tree) of Exclusive clades that comprise only the target taxa and/or Non- Exclusive clades that includes a defined portion of non-target taxa.
This package provides a collection of software provides R support for ADMB (Automatic Differentiation Model Builder) and a GUI interface facilitates the conversion of ADMB template code to C code followed by compilation to a binary executable. Stand-alone functions can also be run by users not interested in clicking a GUI'.
It performs a fast multi-trait genome-wide association analysis based on seemingly unrelated regressions. It tests for pleiotropic effects based on a series of Intersection-Union Wald tests. The package can handle large and unbalanced data and plot results.
Optimal experimental designs for both population and individual studies based on nonlinear mixed-effect models. Often this is based on a computation of the Fisher Information Matrix. This package was developed for pharmacometric problems, and examples and predefined models are available for these types of systems. The methods are described in Nyberg et al. (2012) <doi:10.1016/j.cmpb.2012.05.005>, and Foracchia et al. (2004) <doi:10.1016/S0169-2607(03)00073-7>.
Compute and tune some positive definite and sparse covariance estimators.
Implementation of PCMRS (Partial Credit Model with Response Styles) as proposed in by Tutz, Schauberger and Berger (2018) <doi:10.1177/0146621617748322> . PCMRS is an extension of the regular partial credit model. PCMRS allows for an additional person parameter that characterizes the response style of the person. By taking the response style into account, the estimates of the item parameters are less biased than in partial credit models.
Advanced statistical library offering a method to encapsulate and query the probability space of a dataset effortlessly using Probability Boxes (p-boxes). Its distinctive feature lies in the ease with which users can navigate and analyze marginal, joint, and conditional probabilities while taking into account the underlying correlation structure inherent in the data using copula theory and models. A comprehensive explanation is available in the paper "pbox: Exploring Multivariate Spaces with Probability Boxes" to be published in the Journal of Statistical Software.
Consider a linear predictive regression setting with a potentially large set of candidate predictors. This work is concerned with detecting the presence of out of sample predictability based on out of sample mean squared error comparisons given in Gonzalo and Pitarakis (2023) <doi:10.1016/j.ijforecast.2023.10.005>.