Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Easy estimation of Bayesian multilevel mediation models with Stan.
Defines the functions used to compute the bimodal index as defined by Wang et al. (2009) <https://pmc.ncbi.nlm.nih.gov/articles/PMC2730180/>, <doi:10.4137/CIN.S2846>.
This package provides data import and offers 3 daily snapshot functions from securities of varying prices traded on the Bolivian Securities Exchange, website <https://www.bbv.com.bo/>. The snapshots include a detailed list, scatter plot correlation, and descriptive statistics table for the securities.
The shiny application bdDwC makes biodiversity data field names Darwin Core compatible.
Fits a piecewise exponential hazard to survival data using a Hierarchical Bayesian model with an Intrinsic Conditional Autoregressive formulation for the spatial dependency in the hazard rates for each piece. This function uses Metropolis- Hastings-Green MCMC to allow the number of split points to vary and also uses Stochastic Search Variable Selection to determine what covariates drive the risk of the event. This function outputs trace plots depicting the number of split points in the hazard and the number of variables included in the hazard. The function saves all posterior quantities to the desired path.
Creating, rendering and writing BPMN diagrams <https://www.bpmn.org/>. Functionalities can be used to visualize and export BPMN diagrams created using the pm4py and bupaRminer packages. Part of the bupaR ecosystem.
It offers simplified access to Brazilian macroeconomic and financial indicators selected from official sources, such as the IBGE (Brazilian Institute of Geography and Statistics) via the SIDRA API and the Central Bank of Brazil via the SGS API. It allows users to quickly retrieve and visualize data series such as the unemployment rate and the Selic interest rate. This package was developed for data access and visualization purposes, without generating forecasts or statistical results. For more information, see the official APIs: <https://sidra.ibge.gov.br/> and <https://dadosabertos.bcb.gov.br/dataset/>.
This package provides a collection of functions for structure learning of causal networks and estimation of joint causal effects from observational Gaussian data. Main algorithm consists of a Markov chain Monte Carlo scheme for posterior inference of causal structures, parameters and causal effects between variables. References: F. Castelletti and A. Mascaro (2021) <doi:10.1007/s10260-021-00579-1>, F. Castelletti and A. Mascaro (2022) <doi:10.48550/arXiv.2201.12003>.
An interface to the Briq API <https://briq.github.io>. Briq is a tool that aims to promote employee engagement by helping employees recognize and reward each other. Employees can praise and thank one another (for achieving a company goal, for example) by giving virtual credits (known as briqs or bqs') that can be redeemed for various rewards. The Briq API lets you create, read, update and delete users, user groups, transactions and messages. This package provides functions that simplify getting the users, user groups and transactions of your organization into R.
Easily processes batches of univariate or multivariate regression models. Returns results in a tidy format and generates visualization plots for straightforward interpretation (Wang, Shixiang, et al. (2021) <DOI:10.1002/mdr2.70028>).
Make some distributions from the C++ library Boost available in R'. In addition, the normal-inverse Gaussian distribution and the generalized inverse Gaussian distribution are provided. The distributions are represented by R6 classes. The method to sample from the generalized inverse Gaussian distribution is the one given in "Random variate generation for the generalized inverse Gaussian distribution" Luc Devroye (2012) <doi:10.1007/s11222-012-9367-z>.
Simulate, estimate and forecast a wide range of regression based dynamic models for bounded time series, covering the most commonly applied models in the literature. The main calculations are done in FORTRAN, which translates into very fast algorithms.
This package provides a statistical tool to inference the multi-level partial correlations based on multi-subject time series data, especially for brain functional connectivity. It combines both individual and population level inference by using the methods of Qiu and Zhou. (2021)<DOI: 10.1080/01621459.2021.1917417> and Genovese and Wasserman. (2006)<DOI: 10.1198/016214506000000339>. It realizes two reliable estimation methods of partial correlation coefficients, using scaled lasso and lasso. It can be used to estimate individual- or population-level partial correlations, identify nonzero ones, and find out unequal partial correlation coefficients between two populations.
Bayesian models for accurately estimating conditional distributions by race, using Bayesian Improved Surname Geocoding (BISG) probability estimates of individual race. Implements the methods described in McCartan, Fisher, Goldin, Ho and Imai (2025) <doi:10.1080/01621459.2025.2526695>.
Perform the Benford's Analysis to a data set in order to evaluate if it contains human fabricated data. For more details on the method see Moreau, 2021, Model Assist. Statist. Appl., 16 (2021) 73â 79. <doi:10.3233/MAS-210517>.
Fork-safe, raw access to the Amazon Web Services ('AWS') SDK via the boto3 Python module, and convenient helper functions to query the Simple Storage Service ('S3') and Key Management Service ('KMS'), partial support for IAM', the Systems Manager Parameter Store and Secrets Manager'.
Ecological alteration of degraded lands can improve their sustainability by addition of large amount of biomass to soil resulting in improved soil health. Soil biological parameters (such as carbon, nitrogen and phosphorus cycling enzyme activity) are reactive to minute variations in soils [Ghosh et al. (2021) <doi:10.1016/j.ecoleng.2021.106176> ]. Hence, biological activity index combining Urease, Alkaline Phosphatase, Dehydrogenase (DHA) & Beta-Glucosidase activity will assist in detecting early changes in restored land use systems [Patidar et al. (2023) <doi:10.3389/fsufs.2023.1230156>]. This package helps to calculate Biological Activity Index (BAI) based on vectors of Land Use System/treatment and control/reference Land Use System containing four values of Urease, Alkaline Phosphatase, DHA & Beta-Glucosidase. (DHA), urease (URE), fluorescein diacetate hydrolysis (FDA) and alkaline phosphatase (ALP) activities are measured in soil samples using triphenyl tetrazolium chloride, urea, fluorescein diacetate and p-nitro phenyl-phosphate as substrates, respectively.
These are bartMachine's Java dependency libraries. Note: this package has no functionality of its own and should not be installed as a standalone package without bartMachine.
This package implements the Beta Kernel Process (BKP) for nonparametric modeling of spatially varying binomial probabilities, together with its extension, the Dirichlet Kernel Process (DKP), for categorical or multinomial data. The package provides functions for model fitting, predictive inference with uncertainty quantification, posterior simulation, and visualization in one-and two-dimensional input spaces. Multiple kernel functions (Gaussian, Matern 5/2, and Matern 3/2) are supported, with hyperparameters optimized through multi-start gradient-based search. For more details, see Zhao, Qing, and Xu (2025) <doi:10.48550/arXiv.2508.10447>.
The goal of BayesPower is to provide tools for Bayesian sample size determination and power analysis across a range of common hypothesis testing scenarios using Bayes factors. The main function, BayesPower_BayesFactor(), launches an interactive shiny application for performing these analyses. The application also provides command-line code for reproducibility. Details of the methods are described in the tutorial by Wong, Pawel, and Tendeiro (2025) <doi:10.31234/osf.io/pgdac_v1>.
This is a port of the WTC MATLAB package written by Aslak Grinsted and the wavelet program written by Christopher Torrence and Gibert P. Compo. This package can be used to perform univariate and bivariate (cross-wavelet, wavelet coherence, wavelet clustering) analyses.
The R-package bayespm implements Bayesian Statistical Process Control and Monitoring (SPC/M) methodology. These methods utilize available prior information and/or historical data, providing efficient online quality monitoring of a process, in terms of identifying moderate/large transient shifts (i.e., outliers) or persistent shifts of medium/small size in the process. These self-starting, sequentially updated tools can also run under complete absence of any prior information. The Predictive Control Charts (PCC) are introduced for the quality monitoring of data from any discrete or continuous distribution that is a member of the regular exponential family. The Predictive Ratio CUSUMs (PRC) are introduced for the Binomial, Poisson and Normal data (a later version of the library will cover all the remaining distributions from the regular exponential family). The PCC targets transient process shifts of typically large size (a.k.a. outliers), while PRC is focused in detecting persistent (structural) shifts that might be of medium or even small size. Apart from monitoring, both PCC and PRC provide the sequentially updated posterior inference for the monitored parameter. Bourazas K., Kiagias D. and Tsiamyrtzis P. (2022) "Predictive Control Charts (PCC): A Bayesian approach in online monitoring of short runs" <doi:10.1080/00224065.2021.1916413>, Bourazas K., Sobas F. and Tsiamyrtzis, P. 2023. "Predictive ratio CUSUM (PRC): A Bayesian approach in online change point detection of short runs" <doi:10.1080/00224065.2022.2161434>, Bourazas K., Sobas F. and Tsiamyrtzis, P. 2023. "Design and properties of the predictive ratio cusum (PRC) control charts" <doi:10.1080/00224065.2022.2161435>.
The Bayesian MCMC estimation of parameters for Thomas-type cluster point process with various inhomogeneities. It allows for inhomogeneity in (i) distribution of parent points, (ii) mean number of points in a cluster, (iii) cluster spread. The package also allows for the Bayesian MCMC algorithm for the homogeneous generalized Thomas process. The cluster size is allowed to have a variance that is greater or less than the expected value (cluster sizes are over or under dispersed). Details are described in DvoŠák, RemeÅ¡, Beránek & MrkviÄ ka (2022) <arXiv: 10.48550/arXiv.2205.07946>.
This package provides a Bayesian variable selection approach using continuous spike and slab prior distributions. The prior choices here are motivated by the shrinking and diffusing priors studied in Narisetty & He (2014) <DOI:10.1214/14-AOS1207>.