Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to detect and correct for batch effects in DNA methylation data. The core function is based on latent factor models and can also be used to predict missing values in any other matrix containing real numbers.
The package provides functions to create and use transcript-centric annotation databases/packages. The annotation for the databases are directly fetched from Ensembl using their Perl API. The functionality and data is similar to that of the TxDb packages from the GenomicFeatures package, but, in addition to retrieve all gene/transcript models and annotations from the database, the ensembldb package also provides a filter framework allowing to retrieve annotations for specific entries like genes encoded on a chromosome region or transcript models of lincRNA genes.
This package provides a new clustering algorithm, binary cut, for clustering similarity matrices of functional terms is implemented in this package. It also provides functionalities for visualizing, summarizing and comparing the clusterings.
This package contains a collection of 9 datasets, andrews and bakulski cord blood, blood gse35069, blood gse35069 chen, blood gse35069 complete, combined cord blood, cord bloo d gse68456, gervin and lyle cord blood, guintivano dlpfc and saliva gse48472. The data are used to estimate cell counts using Extrinsic epigenetic age acceleration (EEAA) method. It also contains a collection of 12 datasets to use with MethylClock package to estimate chronological and gestational DNA methylation with estimators to use with different methylation clocks.
This package provides a function to infer pathway activity from gene expression. It contains the linear model inferred in the publication "Perturbation-response genes reveal signaling footprints in cancer gene expression".
This package provides Bayesian shrinkage estimators for effect sizes for a variety of GLM models, using approximation of the posterior for individual coefficients.
Genome level Trellis graph visualizes genomic data conditioned by genomic categories (e.g. chromosomes). For each genomic category, multiple dimensional data which are represented as tracks describe different features from different aspects. This package provides high flexibility to arrange genomic categories and to add self-defined graphics in the plot.
This package provides functionality for running and comparing many different clusterings of single-cell sequencing data or other large mRNA expression data sets.
This package provides a software suite for the automated analysis of Affymetrix arrays.
This is a package for saving GenomicRanges, IRanges and related data structures into file artifacts, and loading them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties.
This package provides a collection of software tools for calculating distance measures.
This is a package for segmentation of allele-specific DNA copy number data and detection of regions with abnormal copy number within each parental chromosome. Both tumor-normal paired and tumor-only analyses are supported.
Genomic data analyses requires integrated visualization of known genomic information and new experimental data. Gviz uses the biomaRt and the rtracklayer packages to perform live annotation queries to Ensembl and UCSC and translates this to e.g. gene/transcript structures in viewports of the grid graphics package. This results in genomic information plotted together with your data.
This package provides a tool for non linear mapping (non linear regression) using a mixture of regression model and an inverse regression strategy. The methods include the GLLiM model (see Deleforge et al (2015) <DOI:10.1007/s11222-014-9461-5>) based on Gaussian mixtures and a robust version of GLLiM, named SLLiM (see Perthame et al (2016) <DOI:10.1016/j.jmva.2017.09.009>) based on a mixture of Generalized Student distributions. The methods also include BLLiM (see Devijver et al (2017) <arXiv:1701.07899>) which is an extension of GLLiM with a sparse block diagonal structure for large covariance matrices (particularly interesting for transcriptomic data).
This package provides a generic three-step pre-processing package for protein microarray data. This package contains different data pre-processing procedures to allow comparison of their performance. These steps are background correction, the coefficient of variation (CV) based filtering, batch correction and normalization.
This package provides an R interface to the HISAT2 spliced short-read aligner by Kim et al. (2015). The package contains wrapper functions to create a genome index and to perform the read alignment to the generated index.
The atena package quantifies expression of TEs (transposable elements) from RNA-seq data through different methods, including ERVmap, TEtranscripts and Telescope. A common interface is provided to use each of these methods, which consists of building a parameter object, calling the quantification function with this object and getting a SummarizedExperiment object as an output container of the quantified expression profiles. The implementation allows quantifing TEs and gene transcripts in an integrated manner.
This package is an automatically generated RnBeads annotation package for the assembly hg19.
MaAsLin2 is comprehensive R package for efficiently determining multivariable association between clinical metadata and microbial meta'omic features. This package relies on general linear models to accommodate most modern epidemiological study designs, including cross-sectional and longitudinal, and offers a variety of data exploration, normalization, and transformation methods.
This package contains gene-level counts for a collection of public scRNA-seq datasets, provided as SingleCellExperiment objects with cell- and gene-level metadata.
This package provides a collection of functions for left-censored missing data imputation. Left-censoring is a special case of missing not at random (MNAR) mechanism that generates non-responses in proteomics experiments. The package also contains functions to artificially generate peptide/protein expression data (log-transformed) as random draws from a multivariate Gaussian distribution as well as a function to generate missing data (both randomly and non-randomly). For comparison reasons, the package also contains several wrapper functions for the imputation of non-responses that are missing at random.
The MassSpecWavelet package aims to process Mass Spectrometry (MS) data mainly through the use of wavelet transforms. It supports peak detection based on Continuous Wavelet Transform (CWT).
Expression levels of mRNA molecules are regulated by different processes, comprising inhibition or activation by transcription factors and post-transcriptional degradation by microRNAs. birta (Bayesian Inference of Regulation of Transcriptional Activity) uses the regulatory networks of transcription factors and miRNAs together with mRNA and miRNA expression data to predict switches in regulatory activity between two conditions. A Bayesian network is used to model the regulatory structure and Markov-Chain-Monte-Carlo is applied to sample the activity states.
This package provides high performance functions for row and column operations on sparse matrices. Currently, the optimizations are limited to data in the column sparse format.