Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Readable, complete and pretty graphs for correspondence analysis made with FactoMineR'. They can be rendered as interactive HTML plots, showing useful informations at mouse hover. The interest is not mainly visual but statistical: it helps the reader to keep in mind the data contained in the cross-table or Burt table while reading the correspondence analysis, thus preventing over-interpretation. Most graphs are made with ggplot2', which means that you can use the + syntax to manually add as many graphical pieces you want, or change theme elements. 3D graphs are made with plotly'.
River hydrograph separation and daily runoff time series analysis. Provides various filters to separate baseflow and quickflow. Implements advanced separation technique by Rets et al. (2022) <doi:10.1134/S0097807822010146> which involves meteorological data to reveal genetic components of the runoff: ground, rain, thaw and spring (seasonal thaw). High-performance C++17 computation, annually aggregated variables, statistical testing and numerous plotting functions for high-quality visualization.
Identifying disease-associated significant SNPs using clustering approach. This package is implementation of method proposed in Xu et al (2019) <DOI:10.1038/s41598-019-50229-6>.
Boosting models for fitting generalized additive models for location, shape and scale ('GAMLSS') to potentially high dimensional data.
This package implements iterative conditional expectation (ICE) estimators of the plug-in g-formula (Wen, Young, Robins, and Hernán (2020) <doi: 10.1111/biom.13321>). Both singly robust and doubly robust ICE estimators based on parametric models are available. The package can be used to estimate survival curves under sustained treatment strategies (interventions) using longitudinal data with time-varying treatments, time-varying confounders, censoring, and competing events. The interventions can be static or dynamic, and deterministic or stochastic (including threshold interventions). Both prespecified and user-defined interventions are available.
This package provides extensions for various geographic spatial file formats, such as shape files and rasters. Currently provides support for the terra geographic spatial formats. See the vignettes for worked examples, demonstrations, and explanations of how to use the various package extensions.
Basic functions for plotting 2D and 3D views of a sphere, by default the Earth with its major coastline, and additional lines and points.
Create a user-friendly plotting GUI for R'. In addition, one purpose of creating the R package is to facilitate third-party software to call R for drawing, for example, Phoenix WinNonlin software calls R to draw the drug concentration versus time curve.
Moon charts are like pie charts except that the proportions are shown as crescent or gibbous portions of a circle, like the lit and unlit portions of the moon. As such, they work best with only one or two groups. gggibbous extends ggplot2 to allow for plotting multiple moon charts in a single panel and does not require a square coordinate system.
Create stunning network experiences powered by the G6 graph visualisation engine JavaScript library <https://g6.antv.antgroup.com/en>. In shiny mode, modify your graph directly from the server function to dynamically interact with nodes and edges. Select your favorite layout among 20 choices. 15 behaviors are available such as interactive edge creation, collapse-expand and brush select. 17 plugins designed to improve the user experience such as a mini-map, toolbars and grid lines. Customise the look and feel of your graph with comprehensive options for nodes, edges and more.
Finds subsets of sets of genotypes with a high Heterozygosity, and Mean of Transformed Kinships (MTK), measures that can indicate a subset would be beneficial for rare-trait discovery and genome-wide association scanning, respectively.
Perform association tests using generalized linear mixed models (GLMMs) in genome-wide association studies (GWAS) and sequencing association studies. First, GMMAT fits a GLMM with covariate adjustment and random effects to account for population structure and familial or cryptic relatedness. For GWAS, GMMAT performs score tests for each genetic variant as proposed in Chen et al. (2016) <DOI:10.1016/j.ajhg.2016.02.012>. For candidate gene studies, GMMAT can also perform Wald tests to get the effect size estimate for each genetic variant. For rare variant analysis from sequencing association studies, GMMAT performs the variant Set Mixed Model Association Tests (SMMAT) as proposed in Chen et al. (2019) <DOI:10.1016/j.ajhg.2018.12.012>, including the burden test, the sequence kernel association test (SKAT), SKAT-O and an efficient hybrid test of the burden test and SKAT, based on user-defined variant sets.
This package provides the necessary functions to identify and extract a selection of already available barcode constructs (Cornils, K. et al. (2014) <doi:10.1093/nar/gku081>) and freely choosable barcode designs from next generation sequence (NGS) data. Furthermore, it offers the possibility to account for sequence errors, the calculation of barcode similarities and provides a variety of visualisation tools (Thielecke, L. et al. (2017) <doi:10.1038/srep43249>).
This package provides functions to generate and analyze data for psychology experiments based on the General Recognition Theory.
This package performs geographically weighted Lasso regressions. Find optimal bandwidth, fit a geographically weighted lasso or ridge regression, and make predictions. These methods are specially well suited for ecological inferences. Bandwidth selection algorithm is from A. Comber and P. Harris (2018) <doi:10.1007/s10109-018-0280-7>.
The first major functionality is to compute the bias in regression coefficients of misspecified linear gene-environment interaction models. The most generalized function for this objective is GE_bias(). However GE_bias() requires specification of many higher order moments of covariates in the model. If users are unsure about how to calculate/estimate these higher order moments, it may be easier to use GE_bias_normal_squaredmis(). This function places many more assumptions on the covariates (most notably that they are all jointly generated from a multivariate normal distribution) and is thus able to automatically calculate many of the higher order moments automatically, necessitating only that the user specify some covariances. There are also functions to solve for the bias through simulation and non-linear equation solvers; these can be used to check your work. Second major functionality is to implement the Bootstrap Inference with Correct Sandwich (BICS) testing procedure, which we have found to provide better finite-sample performance than other inference procedures for testing GxE interaction. More details on these functions are available in Sun, Carroll, Christiani, and Lin (2018) <doi:10.1111/biom.12813>.
Focuses on data collecting, analyzing and visualization in green finance and environmental risk research and analysis. Main function includes environmental data collecting from official websites such as MEP (Ministry of Environmental Protection of China, <https://www.mee.gov.cn>), water related projects identification and environmental data visualization.
Identify and visualize individuals with unusual association patterns of genetics and geography using the approach of Chang and Schmid (2023) <doi:10.1101/2023.04.06.535838>. It detects potential outliers that violate the isolation-by-distance assumption using the K-nearest neighbor approach. You can obtain a table of outliers with statistics and visualize unusual geo-genetic patterns on a geographical map. This is useful for landscape genomics studies to discover individuals with unusual geography and genetics associations from a large biological sample.
This package provides a simple wrapper for Wikipedia data. Specifically, this package looks to fill a gap in retrieving text data in a tidy format that can be used for Natural Language Processing.
Variable selection for ultrahigh-dimensional ("large p small n") linear Gaussian models using a fiducial framework allowing to draw inference on the parameters. Reference: Lai, Hannig & Lee (2015) <doi:10.1080/01621459.2014.931237>.
This package performs linear regression with correlated predictors, responses and correlated measurement errors in predictors and responses, correcting for biased caused by these.
Data from multi environment agronomic trials, which are often carried out by plant breeders, can be analyzed with the tools offered by this package such as the Additive Main effects and Multiplicative Interaction model or AMMI ('Gauch 1992, ISBN:9780444892409) and the Site Regression model or SREG ('Cornelius 1996, <doi:10.1201/9780367802226>). Since these methods present a poor performance under the presence of outliers and missing values, this package includes robust versions of the AMMI model ('Rodrigues 2016, <doi:10.1093/bioinformatics/btv533>), and also imputation techniques specifically developed for this kind of data ('Arciniegas-Alarcón 2014, <doi:10.2478/bile-2014-0006>).
The genetic algorithm can be used directly to find the similarity of users and more effectively to increase the efficiency of the collaborative filtering method. By identifying the nearest neighbors to the active user, before the genetic algorithm, and by identifying suitable starting points, an effective method for user-based collaborative filtering method has been developed. This package uses an optimization algorithm (continuous genetic algorithm) to directly find the optimal similarities between active users (users for whom current recommendations are made) and others. First, by determining the nearest neighbor and their number, the number of genes in a chromosome is determined. Each gene represents the neighbor's similarity to the active user. By estimating the starting points of the genetic algorithm, it quickly converges to the optimal solutions. The positive point is the independence of the genetic algorithm on the number of data that for big data is an effective help in solving the problem.
Given a landscape resistance surface, creates minimum planar graph (Fall et al. (2007) <doi:10.1007/s10021-007-9038-7>) and grains of connectivity (Galpern et al. (2012) <doi:10.1111/j.1365-294X.2012.05677.x>) models that can be used to calculate effective distances for landscape connectivity at multiple scales. Documentation is provided by several vignettes, and a paper (Chubaty, Galpern & Doctolero (2020) <doi:10.1111/2041-210X.13350>).