Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation in R of the alpha-shape of a finite set of points in the three-dimensional space. The alpha-shape generalizes the convex hull and allows to recover the shape of non-convex and even non-connected sets in 3D, given a random sample of points taken into it. Besides the computation of the alpha-shape, this package provides users with functions to compute the volume of the alpha-shape, identify the connected components and facilitate the three-dimensional graphical visualization of the estimated set.
Implementation of adaptive p-value thresholding (AdaPT), including both a framework that allows the user to specify any algorithm to learn local false discovery rate and a pool of convenient functions that implement specific algorithms. See Lei, Lihua and Fithian, William (2016) <arXiv:1609.06035>.
This package provides a novel interpretable machine learning-based framework to automate the development of a clinical scoring model for predefined outcomes. Our novel framework consists of six modules: variable ranking with machine learning, variable transformation, score derivation, model selection, domain knowledge-based score fine-tuning, and performance evaluation.The details are described in our research paper<doi:10.2196/21798>. Users or clinicians could seamlessly generate parsimonious sparse-score risk models (i.e., risk scores), which can be easily implemented and validated in clinical practice. We hope to see its application in various medical case studies.
This package provides a client for AWS Polly <http://aws.amazon.com/documentation/polly>, a speech synthesis service.
Actuarial reports are prepared for the last day of a specific period, such as a month, a quarter or a year. Actuarial models assume that certain events happen at the beginning or end of periods. The package contains functions to easily refer to the first or last (working) day within a specific period relative to a base date to facilitate actuarial reporting and to compare results.
Automatically generate a changelog file (NEWS.md / CHANGELOG.md) from the git history using conventional commit messages (<https://www.conventionalcommits.org/en/v1.0.0/>).
Left, right or interval censored mixed-effects linear model with autoregressive errors of order p or DEC correlation structure using the type-EM algorithm. The error distribution can be Normal or t-Student. It provides the parameter estimates, the standard errors and prediction of future observations (available only for the normal case). Olivari et all (2021) <doi:10.1080/10543406.2020.1852246>.
This package provides functions to perform the fitting of an adaptive mixture of Student-t distributions to a target density through its kernel function as described in Ardia et al. (2009) <doi:10.18637/jss.v029.i03>. The mixture approximation can then be used as the importance density in importance sampling or as the candidate density in the Metropolis-Hastings algorithm to obtain quantities of interest for the target density itself.
Getting and parsing data of location geocode/reverse-geocode and administrative regions from AutoNavi Maps'<https://lbs.amap.com/api/webservice/summary> API.
This package provides a cross-platform R framework that facilitates processing of any number of Affymetrix microarray samples regardless of computer system. The only parameter that limits the number of chips that can be processed is the amount of available disk space. The Aroma Framework has successfully been used in studies to process tens of thousands of arrays. This package has actively been used since 2006.
Functionality for working with virtual machines (VMs) in Microsoft's Azure cloud: <https://azure.microsoft.com/en-us/services/virtual-machines/>. Includes facilities to deploy, startup, shutdown, and cleanly delete VMs and VM clusters. Deployment configurations can be highly customised, and can make use of existing resources as well as creating new ones. A selection of predefined configurations is provided to allow easy deployment of commonly used Linux and Windows images, including Data Science Virtual Machines. With a running VM, execute scripts and install optional extensions. Part of the AzureR family of packages.
Uses locality sensitive hashing and creates a neighbourhood graph for a data set and calculates the adjusted rank index value for the same. It uses Gaussian random planes to decide the nature of a given point. Datar, Mayur, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni(2004) <doi:10.1145/997817.997857>.
Bland-Altman plot and scatter plot with identity line for visualization and point and interval estimates for different metrics related to reproducibility/repeatability/agreement including the concordance correlation coefficient, intraclass correlation coefficient, within-subject coefficient of variation, smallest detectable difference, and mean normalized smallest detectable difference.
Implementation of the autocorrelated conditioned Latin Hypercube Sampling (acLHS) algorithm for 1D (time-series) and 2D (spatial) data. The acLHS algorithm is an extension of the conditioned Latin Hypercube Sampling (cLHS) algorithm that allows sampled data to have similar correlative and statistical features of the original data. Only a properly formatted dataframe needs to be provided to yield subsample indices from the primary function. For more details about the cLHS algorithm, see Minasny and McBratney (2006), <doi:10.1016/j.cageo.2005.12.009>. For acLHS, see Le and Vargas (2024) <doi:10.1016/j.cageo.2024.105539>.
Parse Autonomous Recording Unit (ARU) data and for sub-sampling recordings. Extract Metadata from your recordings, select a subset of recordings for interpretation, and prepare files for processing on the WildTrax <https://wildtrax.ca/> platform. Read and process metadata from recordings collected using the SongMeter and BAR-LT types of ARUs.
Add-on to the airGR package which provides the tools to assimilate observed discharges in daily GR hydrological models. The package consists in two functions allowing to perform the assimilation of observed discharges via the Ensemble Kalman filter or the Particle filter as described in Piazzi et al. (2021) <doi:10.1029/2020WR028390>.
An evaluation framework for algorithm portfolios using Item Response Theory (IRT). We use continuous and polytomous IRT models to evaluate algorithms and introduce algorithm characteristics such as stability, effectiveness and anomalousness (Kandanaarachchi, Smith-Miles 2020) <doi:10.13140/RG.2.2.11363.09760>.
Use Monte-Carlo and K-fold cross-validation coupled with machine- learning classification algorithms to perform population assignment, with functionalities of evaluating discriminatory power of independent training samples, identifying informative loci, reducing data dimensionality for genomic data, integrating genetic and non-genetic data, and visualizing results.
This package provides a (mildly) opinionated set of functions to help assess medication adherence for researchers working with medication claims data. Medication adherence analyses have several complex steps that are often convoluted and can be time-intensive. The focus is to create a set of functions using "tidy principles" geared towards transparency, speed, and flexibility while working with adherence metrics. All functions perform exactly one task with an intuitive name so that a researcher can handle details (often achieved with vectorized solutions) while we handle non-vectorized tasks common to most adherence calculations such as adjusting fill dates and determining episodes of care. The methodologies in referenced in this package come from Canfield SL, et al (2019) "Navigating the Wild West of Medication Adherence Reporting in Specialty Pharmacy" <doi:10.18553/jmcp.2019.25.10.1073>.
This package implements the methodology introduced in Capezza, Lepore, and Paynabar (2025) <doi:10.1080/00401706.2025.2561744> for process monitoring with limited labeling resources. The package provides functions to (i) simulate data streams with true latent states and multivariate Gaussian observations as done in the paper, (ii) fit partially hidden Markov models (pHMMs) using a constrained Baum-Welch algorithm with partial labels, and (iii) perform stream-based active learning that balances exploration and exploitation to decide whether to request labels in real time. The methodology is particularly suited for statistical process monitoring in industrial applications where labeling is costly.
This package creates interactive Venn diagrams using the amCharts5 library for JavaScript'. They can be used directly from the R console, from RStudio', in shiny applications, and in rmarkdown documents.
This package provides a web framework inspired by express.js to build any web service from multi-page websites to RESTful application programming interfaces.
Multivariate tools to analyze comparative data, i.e. a phylogeny and some traits measured for each taxa. The package contains functions to represent comparative data, compute phylogenetic proximities, perform multivariate analysis with phylogenetic constraints and test for the presence of phylogenetic autocorrelation. The package is described in Jombart et al (2010) <doi:10.1093/bioinformatics/btq292>.
Fast tool to calculate the Adjusted Market Inefficiency Measure following Tran & Leirvik (2019) <doi:10.1016/j.frl.2019.03.004>. This tool provides rolling window estimates of the Adjusted Market Inefficiency Measure for multiple instruments simultaneously.