Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation of custom tidymodels metrics for multi-class prediction models with a single negative class. Currently are implemented macro-average sensitivity and specificity as in Mortaz, Ebrahim (2020) "Imbalance accuracy metric for model selection in multi-class imbalance classification problemsâ <doi:10.1016/j.knosys.2020.106490> and a generalized weighted Youden index as in Li, D.L., Shen F., Yin Y., Peng J.X and Chen P.Y. (2013) â Weighted Youden index and its two-independent-sample comparison based on weighted sensitivity and specificityâ <doi:10.3760/cma.j.issn.0366-6999.20123102>.
Agricultural data for 1888-2021 from the Morrow Plots at the University of Illinois. The world's second oldest ongoing agricultural experiment, the Morrow Plots measure the impact of crop rotation and fertility treatments on corn yields. The data includes planting information and annual yield measures for corn grown continuously and in rotation with other crops, in treated and untreated soil.
This package provides functions for carrying out nonparametric hypothesis tests of the MCAR hypothesis based on the theory of Frechet classes and compatibility. Also gives functions for computing halfspace representations of the marginal polytope and related geometric objects.
Analyses species distribution models and evaluates their performance. It includes functions for variation partitioning, extracting variable importance, computing several metrics of model discrimination and calibration performance, optimizing prediction thresholds based on a number of criteria, performing multivariate environmental similarity surface (MESS) analysis, and displaying various analytical plots. Initially described in Barbosa et al. (2013) <doi:10.1111/ddi.12100>.
This package provides a collection of miscellaneous helper function for running multilevel/mixed models in lme4'. This package aims to provide functions to compute common tasks when estimating multilevel models such as computing the intraclass correlation and design effect, centering variables, estimating the proportion of variance explained at each level, pseudo-R squared, random intercept and slope reliabilities, tests for homogeneity of variance at level-1, and cluster robust and bootstrap standard errors. The tests and statistics reported in the package are from Raudenbush & Bryk (2002, ISBN:9780761919049), Hox et al. (2018, ISBN:9781138121362), and Snijders & Bosker (2012, ISBN:9781849202015).
This package provides a generalization of principal component analysis for integrative analysis. The method finds principal components that describe single matrices or that are common to several matrices. The solutions are sparse. Rank of solutions is automatically selected using cross validation. The method is described in Kallus et al. (2019) <doi:10.48550/arXiv.1911.04927>.
Generate a stream of pseudo-random numbers generated using the MLS Junk Generator algorithm. Functions exist to generate single pseudo-random numbers as well as a vector, data frame, or matrix of pseudo-random numbers.
This package provides a simple tool allowing users to easily and dynamically explore or document a data set using a tree structure.
The 1001 time series from the M-competition (Makridakis et al. 1982) <DOI:10.1002/for.3980010202> and the 3003 time series from the IJF-M3 competition (Makridakis and Hibon, 2000) <DOI:10.1016/S0169-2070(00)00057-1>.
Incorporates a Bayesian monotonic single-index mixed-effect model with a multivariate skew-t likelihood, specifically designed to handle survey weights adjustments. Features include a simulation program and an associated Gibbs sampler for model estimation. The single-index function is constrained to be monotonic increasing, utilizing a customized Gaussian process prior for precise estimation. The model assumes random effects follow a canonical skew-t distribution, while residuals are represented by a multivariate Student-t distribution. Offers robust Bayesian adjustments to integrate survey weight information effectively.
This package contains functions performing Bayesian inference for meta-analytic and network meta-analytic models through Markov chain Monte Carlo algorithm. Currently, the package implements Hui Yao, Sungduk Kim, Ming-Hui Chen, Joseph G. Ibrahim, Arvind K. Shah, and Jianxin Lin (2015) <doi:10.1080/01621459.2015.1006065> and Hao Li, Daeyoung Lim, Ming-Hui Chen, Joseph G. Ibrahim, Sungduk Kim, Arvind K. Shah, Jianxin Lin (2021) <doi:10.1002/sim.8983>. For maximal computational efficiency, the Markov chain Monte Carlo samplers for each model, written in C++, are fine-tuned. This software has been developed under the auspices of the National Institutes of Health and Merck & Co., Inc., Kenilworth, NJ, USA.
An ensemble meta-prediction framework to integrate multiple regression models into a current study. Gu, T., Taylor, J.M.G. and Mukherjee, B. (2020) <arXiv:2010.09971>. A meta-analysis framework along with two weighted estimators as the ensemble of empirical Bayes estimators, which combines the estimates from the different external models. The proposed framework is flexible and robust in the ways that (i) it is capable of incorporating external models that use a slightly different set of covariates; (ii) it is able to identify the most relevant external information and diminish the influence of information that is less compatible with the internal data; and (iii) it nicely balances the bias-variance trade-off while preserving the most efficiency gain. The proposed estimators are more efficient than the naive analysis of the internal data and other naive combinations of external estimators.
This package provides a way to estimate and test marginal mediation effects for zero-inflated compositional mediators. Estimates of Natural Indirect Effect (NIE), Natural Direct Effect (NDE) of each taxon, as well as their standard errors and confident intervals, were provided as outputs. Zeros will not be imputed during analysis. See Wu et al. (2022) <doi:10.3390/genes13061049>.
This package provides a set of tools for testing networks. It includes functions for univariate and multivariate conditional uniform graph and quadratic assignment procedure testing, and network regression. The package is a complement to Multimodal Political Networks (2021, ISBN:9781108985000), and includes various datasets used in the book. Built on the manynet package, all functions operate with matrices, edge lists, and igraph', network', and tidygraph objects, and on one-mode and two-mode (bipartite) networks.
This package implements structural estimators to estimate preferences and correct for the sample selection bias of observed outcomes in matching markets. This includes one-sided matching of agents into groups (Klein, 2015) <doi:10.17863/CAM.5812> as well as two-sided matching of students to schools (Klein et al., 2024) <doi:10.1016/j.geb.2024.07.003>. The package also contains algorithms to find stable matchings in the three most common matching problems: the stable roommates problem (Irving, 1985) <doi:10.1016/0196-6774(85)90033-1>, the college admissions problem (Gale and Shapley, 1962) <doi:10.2307/2312726>, and the house allocation problem (Shapley and Scarf, 1974) <doi:10.1016/0304-4068(74)90033-0>.
Defines predict function that transforms output from a Tweedie Generalized Linear Mixed Model (using glmmTMB'), Generalized Additive Model (using mgcv'), or spatio-temporal Generalized Linear Mixed Model (using package tinyVAST'), and returns predicted proportions (and standard errors) across a grouping variable from an equivalent multivariate-logit Tweedie model. These predicted proportions can then be used for standard plotting and diagnostics. See Thorson et al. 2022 <doi:10.1002/ecy.3637>.
Impute the covariance matrix of incomplete data so that factor analysis can be performed. Imputations are made using multiple imputation by Multivariate Imputation with Chained Equations (MICE) and combined with Rubin's rules. Parametric Fieller confidence intervals and nonparametric bootstrap confidence intervals can be obtained for the variance explained by different numbers of principal components. The method is described in Nassiri et al. (2018) <doi:10.3758/s13428-017-1013-4>.
This package implements differential methylation region (DMR) detection using a multistage Markov chain Monte Carlo (MCMC) algorithm based on the alpha-skew generalized normal (ASGN) distribution. Version 0.2.0 removes the Anderson-Darling test stage, improves computational efficiency of the core ASGN and multistage MCMC routines, and adds convenience functions for summarizing and visualizing detected DMRs. The methodology is based on Yang (2025) <https://www.proquest.com/docview/3218878972>.
With foundations on the work by Goutali and Chebana (2024) <doi:10.1016/j.envsoft.2024.106090>, this package contains various univariate and multivariate trend tests. The main functions regard the Multivariate Dependence Trend and Multivariate Overall Trend tests as proposed by Goutali and Chebana (2024), as well as a plotting function that proves useful as a summary and complement of the tests. Although many packages and methods carry univariate tests, the Mann-Kendall and Spearman's rho test implementations are included in the package with an adapted version to hydrological formulation (e.g. as in Rao and Hamed 1998 <doi:10.1016/S0022-1694(97)00125-X> or Chebana 2022 <doi:10.1016/C2021-0-01317-1>). For better understanding of the example use of the functions, three datasets are included. These are synthetic data and shouldn't be used beyond that purpose.
Download data from the Ada and Archibald MacLeish Field Station in Whately, MA. The Ada and Archibald MacLeish Field Station is a 260-acre patchwork of forest and farmland located in West Whately, MA that provides opportunities for faculty and students to pursue environmental research, outdoor education, and low-impact recreation (see <https://www.smith.edu/discover-smith/smith-action/sustainable-smith/macleish-field-station> for more information). This package contains weather data over several years, and spatial data on various man-made and natural structures.
The MCC-F1 analysis is a method to evaluate the performance of binary classifications. The MCC-F1 curve is more reliable than the Receiver Operating Characteristic (ROC) curve and the Precision-Recall (PR)curve under imbalanced ground truth. The MCC-F1 analysis also provides the MCC-F1 metric that integrates classifier performance over varying thresholds, and the best threshold of binary classification.
Learning a mixed directed acyclic graph based on both continuous and categorical data.
This package provides a client for interacting with magma', the data warehouse of the UCSF Data Library'. magmaR includes functions for querying and downloading data from magma', in order to enable working with such data in R, as well as for uploading local data to magma'.
The unique function of this package allows representing in a single graph the relative occurrence and co-occurrence of events measured in a sample. As examples, the package was applied to describe the occurrence and co-occurrence of different species of bacterial or viral symbionts infecting arthropods at the individual level. The graphics allows determining the prevalence of each symbiont and the patterns of multiple infections (i.e. how different symbionts share or not the same individual hosts). We named the package after the famous painter as the graphical output recalls Mondrianâ s paintings.