Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Graphical tools and goodness-of-fit tests for right-censored data: 1. Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling tests, which use the empirical distribution function for complete data and are extended for right-censored data. 2. Generalized chi-squared-type test, which is based on the squared differences between observed and expected counts using random cells with right-censored data. 3. A series of graphical tools such as probability or cumulative hazard plots to guide the decision about the most suitable parametric model for the data. These functions share several features as they can handle both complete and right-censored data, and they provide parameter estimates for the distributions under study.
This package provides a word cloud text geom for ggplot2'. Texts are placed so that they do not overlap as in ggrepel'. The algorithm used is a variation around the one of wordcloud2.js'.
Estimation of generalized linear models with correlated/clustered observations by use of generalized estimating equations (GEE). See e.g. Halekoh and Højsgaard, (2005, <doi:10.18637/jss.v015.i02>), for details. Several types of clustering are supported, including exchangeable variance structures, AR1 structures, M-dependent, user-specified variance structures and more. The model fitting computations are performed using modified code from the geeM package, while the interface and output objects have been written to resemble the geepack package. The package also contains additional tools for working with and inspecting results from the geepack package, e.g. a confint method for geeglm objects from geepack'.
In gene-expression microarray studies, for example, one generally obtains a list of dozens or hundreds of genes that differ in expression between samples and then asks What does all of this mean biologically? Alternatively, gene lists can be derived conceptually in addition to experimentally. For instance, one might want to analyze a group of genes known as housekeeping genes. The work of the Gene Ontology (GO) Consortium <geneontology.org> provides a way to address that question. GO organizes genes into hierarchical categories based on biological process, molecular function and subcellular localization. The role of GoMiner is to automate the mapping between a list of genes and GO, and to provide a statistical summary of the results as well as a visualization.
Generates (U,W) mixture graphs where U is a line graph graphon and W is a dense graphon. Graphons are graph limits and graphon U can be written as sequence of positive numbers adding to 1. Graphs are sampled from U and W and joined randomly to obtain the mixture graph. Given a mixture graph, U can be inferred. Kandanaarachchi and Ong (2025) <doi:10.48550/arXiv.2505.13864>.
Implementation of global envelopes for a set of general d-dimensional vectors T in various applications. A 100(1-alpha)% global envelope is a band bounded by two vectors such that the probability that T falls outside this envelope in any of the d points is equal to alpha. Global means that the probability is controlled simultaneously for all the d elements of the vectors. The global envelopes can be used for graphical Monte Carlo and permutation tests where the test statistic is a multivariate vector or function (e.g. goodness-of-fit testing for point patterns and random sets, functional analysis of variance, functional general linear model, n-sample test of correspondence of distribution functions), for central regions of functional or multivariate data (e.g. outlier detection, functional boxplot) and for global confidence and prediction bands (e.g. confidence band in polynomial regression, Bayesian posterior prediction). See Myllymäki and MrkviÄ ka (2024) <doi:10.18637/jss.v111.i03>, Myllymäki et al. (2017) <doi:10.1111/rssb.12172>, MrkviÄ ka and Myllymäki (2023) <doi:10.1007/s11222-023-10275-7>, MrkviÄ ka et al. (2016) <doi:10.1016/j.spasta.2016.04.005>, MrkviÄ ka et al. (2017) <doi:10.1007/s11222-016-9683-9>, MrkviÄ ka et al. (2020) <doi:10.14736/kyb-2020-3-0432>, MrkviÄ ka et al. (2021) <doi:10.1007/s11009-019-09756-y>, Myllymäki et al. (2021) <doi:10.1016/j.spasta.2020.100436>, MrkviÄ ka et al. (2022) <doi:10.1002/sim.9236>, Dai et al. (2022) <doi:10.5772/intechopen.100124>, DvoŠák and MrkviÄ ka (2022) <doi:10.1007/s00180-021-01134-y>, MrkviÄ ka et al. (2023) <doi:10.48550/arXiv.2309.04746>, and Konstantinou et al. (2024) <doi: 10.1007/s00180-024-01569-z>.
This package provides functions for drawing node-and-edge graphs that have been laid out by graphviz'. This provides an alternative rendering to that provided by the Rgraphviz package, with two main advantages: the rendering provided by gridGraphviz should be more similar to what graphviz itself would draw; and rendering with grid allows for post-hoc customisations using the named viewports and grobs that gridGraphviz produces.
Gitea is a community managed, lightweight code hosting solution were projects and their respective git repositories can be managed <https://gitea.io>. This package gives an interface to the Gitea API to access and manage repositories, issues and organizations directly in R.
This package provides functions for rendering Bezier curves (Pomax, 2018) <https://pomax.github.io/bezierinfo/> in grid'. There is support for both quadratic and cubic Bezier curves. There are also functions for calculating points on curves, tangents to curves, and normals to curves.
Generates synthetic time series based on various univariate time series models including MAR and ARIMA processes. Kang, Y., Hyndman, R.J., Li, F.(2020) <doi:10.1002/sam.11461>.
Data sets included here are for use with package GEOmap. These include world map, USA map, Coso map, Japan Map.
To create the multiple polygonal point layer for easily discernible shapes, we developed the package, it is like the geom_point of ggplot2'. It can be used to draw the scatter plot.
R-interface to C++ implementation of the rank/score permutation based GSEA test (Subramanian et al 2005 <doi: 10.1073/pnas.0506580102>).
The philosophy in the package is described in Stasny (1988) <doi:10.2307/1391558> and Gutierrez, A., Trujillo, L. & Silva, N. (2014), <ISSN:1492-0921> to estimate the gross flows under complex surveys using a Markov chain approach with non response.
Geostatistical analysis including variogram-based, likelihood-based and Bayesian methods. Software companion for Diggle and Ribeiro (2007) <doi:10.1007/978-0-387-48536-2>.
Multi-threaded GIF encoder written in Rust: <https://gif.ski/>. Converts images to GIF animations using pngquant's efficient cross-frame palettes and temporal dithering with thousands of colors per frame.
Sparse large Directed Acyclic Graphs learning with a combination of a convex program and a tailored genetic algorithm (see Champion et al. (2017) <https://hal.archives-ouvertes.fr/hal-01172745v2/document>).
An (aspirational) collection of additional geometries and statistics for ggplot2'.
Using an approach based on similarity graph to estimate change-point(s) and the corresponding p-values. Can be applied to any type of data (high-dimensional, non-Euclidean, etc.) as long as a reasonable similarity measure is available.
This package implements a new multiple imputation method that draws imputations from a latent joint multivariate normal model which underpins generally structured data. This model is constructed using a sequence of flexible conditional linear models that enables the resulting procedure to be efficiently implemented on high dimensional datasets in practice. See Robbins (2021) <arXiv:2008.02243>.
This package contains the development of a tool that provides a web-based graphical user interface (GUI) to perform Techniques from a subset of spatial statistics known as geographically weighted (GW) models. Contains methods described by Brunsdon et al., 1996 <doi:10.1111/j.1538-4632.1996.tb00936.x>, Brunsdon et al., 2002 <doi:10.1016/s0198-9715(01)00009-6>, Harris et al., 2011 <doi:10.1080/13658816.2011.554838>, Brunsdon et al., 2007 <doi:10.1111/j.1538-4632.2007.00709.x>.
Discrete scales for the colorblind-friendly Okabe-Ito palette, including color', fill', and edge_colour'. ggokabeito provides ggplot2 and ggraph scales to easily use the Okabe-Ito palette in your data visualizations.
Four graph-based tests are provided for testing whether two samples are from the same distribution. It works for both continuous data and discrete data.
The ggplot2 package provides a powerful set of tools for visualising and investigating data. The ggsoccer package provides a set of functions for elegantly displaying and exploring soccer event data with ggplot2'. Providing extensible layers and themes, it is designed to work smoothly with a variety of popular sports data providers.