Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
State-of-the-art Multi-Objective Particle Swarm Optimiser (MOPSO), based on the algorithm developed by Lin et al. (2018) <doi:10.1109/TEVC.2016.2631279> with improvements described by Marinao-Rivas & Zambrano-Bigiarini (2020) <doi:10.1109/LA-CCI48322.2021.9769844>. This package is inspired by and closely follows the philosophy of the single objective hydroPSO R package ((Zambrano-Bigiarini & Rojas, 2013) <doi:10.1016/j.envsoft.2013.01.004>), and can be used for global optimisation of non-smooth and non-linear R functions and R-base models (e.g., TUWmodel', GR4J', GR6J'). However, the main focus of hydroMOPSO is optimising environmental and other real-world models that need to be run from the system console (e.g., SWAT+'). hydroMOPSO communicates with the model to be optimised through its input and output files, without requiring modifying its source code. Thanks to its flexible design and the availability of several fine-tuning options, hydroMOPSO can tackle a wide range of multi-objective optimisation problems (e.g., multi-objective functions, multiple model variables, multiple periods). Finally, hydroMOPSO is designed to run on multi-core machines or network clusters, to alleviate the computational burden of complex models with long execution time.
This package provides functions for testing affine hypotheses on the regression coefficient vector in regression models with heteroskedastic errors: (i) a function for computing various test statistics (in particular using HC0-HC4 covariance estimators based on unrestricted or restricted residuals); (ii) a function for numerically approximating the size of a test based on such test statistics and a user-supplied critical value; and, most importantly, (iii) a function for determining size-controlling critical values for such test statistics and a user-supplied significance level (also incorporating a check of conditions under which such a size-controlling critical value exists). The three functions are based on results in Poetscher and Preinerstorfer (2021) "Valid Heteroskedasticity Robust Testing" <doi:10.48550/arXiv.2104.12597>, which will appear as <doi:10.1017/S0266466623000269>.
This package provides a set of objects and functions for Bayes Linear emulation and history matching. Core functionality includes automated training of emulators to data, diagnostic functions to ensure suitability, and a variety of proposal methods for generating waves of points. For details on the mathematical background, there are many papers available on the topic (see references attached to function help files or the below references); for details of the functions in this package, consult the manual or help files. Iskauskas, A, et al. (2024) <doi:10.18637/jss.v109.i10>. Bower, R.G., Goldstein, M., and Vernon, I. (2010) <doi:10.1214/10-BA524>. Craig, P.S., Goldstein, M., Seheult, A.H., and Smith, J.A. (1997) <doi:10.1007/978-1-4612-2290-3_2>.
This package creates styled tables for data presentation. Export to HTML, LaTeX, RTF, Word', Excel', PowerPoint', typst', SVG and PNG. Simple, modern interface to manipulate borders, size, position, captions, colours, text styles and number formatting. Table cells can span multiple rows and/or columns. Includes a huxreg function to create regression tables, and quick_* one-liners to print tables to a new document.
This package provides a Shiny app allowing to convert HTML code to R code (e.g. <span>Hello</span> to tags$span("Hello")'), for usage in a Shiny UI.
This package provides the posterior estimates of the regression coefficients when horseshoe prior is specified. The regression models considered here are logistic model for binary response and log normal accelerated failure time model for right censored survival response. The linear model analysis is also available for completeness. All models provide deviance information criterion and widely applicable information criterion. See <doi:10.1111/rssc.12377> Maity et. al. (2019) <doi:10.1111/biom.13132> Maity et. al. (2020).
This code provides a method to fit the hidden compact representation model as well as to identify the causal direction on discrete data. We implement an effective solution to recover the above hidden compact representation under the likelihood framework. Please see the Causal Discovery from Discrete Data using Hidden Compact Representation from NIPS 2018 by Ruichu Cai, Jie Qiao, Kun Zhang, Zhenjie Zhang and Zhifeng Hao (2018) <https://nips.cc/Conferences/2018/Schedule?showEvent=11274> for a description of some of our methods.
EQ-5D value set estimation can be done using the hybrid model likelihood as described by Oppe and van Hout (2010) <doi:10.1002/hec.3560> and Ramos-Goñi et al. (2017) <doi:10.1097/MLR.0000000000000283>. The package is based on flexmix and among others contains an M-step-driver as described by Leisch (2004) <doi:10.18637/jss.v011.i08>. Users can estimate latent classes and address preference heterogeneity. Both uncensored and censored data are supported. Furthermore, heteroscedasticity can be taken into account. It is possible to control for different covariates on the continuous and dichotomous parts of the data and start values can differ between the expected latent classes.
Machine learning hierarchical risk clustering portfolio allocation strategies. The implemented methods are: Hierarchical risk parity (De Prado, 2016) <DOI: 10.3905/jpm.2016.42.4.059>. Hierarchical clustering-based asset allocation (Raffinot, 2017) <DOI: 10.3905/jpm.2018.44.2.089>. Hierarchical equal risk contribution portfolio (Raffinot, 2018) <DOI: 10.2139/ssrn.3237540>. A Constrained Hierarchical Risk Parity Algorithm with Cluster-based Capital Allocation (Pfitzingera and Katzke, 2019) <https://www.ekon.sun.ac.za/wpapers/2019/wp142019/wp142019.pdf>.
An almost direct port of the python humanize package <https://github.com/jmoiron/humanize>. This package contains utilities to convert values into human readable forms.
This package provides uniform testing procedures for existence and heterogeneity of threshold effects in high-dimensional nonparametric panel regression models. The package accompanies the paper Chen, Keilbar, Su and Wang (2023) "Inference on many jumps in nonparametric panel regression models". arXiv preprint <doi:10.48550/arXiv.2312.01162>.
LecÈ iile prof/cls trebuie completate cu un câmp "ora", astfel ca oricare douÄ lecÈ ii prof/cls/ora sÄ nu se suprapunÄ Ã®ntr-o aceeaÈ i orÄ . The prof/cls lessons must be completed with a "hour" field ('ora), so that any two prof/cls/ora lessons do not overlap in the same hour. <https://vlad.bazon.net/>.
This package implements marker-based estimation of heritability when observations on genetically identical replicates are available. These can be either observations on individual plants or plot-level data in a field trial. Heritability can then be estimated using a mixed model for the individual plant or plot data. For comparison, also mixed-model based estimation using genotypic means and estimation of repeatability with ANOVA are implemented. For illustration the package contains several datasets for the model species Arabidopsis thaliana.
Consider the linear mixed model with normal random effects. A typical method to solve Henderson's Mixed Model Equations (HMME) is recursive estimation of the fixed effects and random effects. We provide a fast, stable, and scalable solver to the HMME without computing matrix inverse. See Kim (2017) <arXiv:1710.09663> for more details.
This package implements the estimators and algorithms described in Chapters 8 and 9 of the book "The Fundamentals of Heavy Tails: Properties, Emergence, and Estimation" by Nair et al. (2022, ISBN:9781009053730). These include the Hill estimator, Moments estimator, Pickands estimator, Peaks-over-Threshold (POT) method, Power-law fit, and the Double Bootstrap algorithm.
Homomorphic encryption (Brakerski and Vaikuntanathan (2014) <doi:10.1137/120868669>) using Ring Learning with Errors (Lyubashevsky et al. (2012) <https://eprint.iacr.org/2012/230>) is a form of Learning with Errors (Regev (2005) <doi:10.1145/1060590.1060603>) using polynomial rings over finite fields. Functions to generate the required polynomials (using polynom'), with various distributions of coefficients are provided. Additionally, functions to generate and take coefficient modulo are provided.
Facilitates hierarchical clustering analysis with functions to read data in txt', xlsx', and xls formats, apply normalization techniques to the dataset, perform hierarchical clustering and construct scatter plot from principal component analysis to evaluate the groups obtained.
The heatex package calculates heat storage in the body and the components of heat exchange (conductive, convective, radiative, and evaporative) between the body and the environment during physical activity based on the principles of partitional calorimetry. The program enables heat exchange calculations for a range of environmental conditions when wearing various clothing ensembles.
This package provides methods for analysing and forecasting hierarchical and grouped time series. The available forecast methods include bottom-up, top-down, optimal combination reconciliation (Hyndman et al. 2011) <doi:10.1016/j.csda.2011.03.006>, and trace minimization reconciliation (Wickramasuriya et al. 2018) <doi:10.1080/01621459.2018.1448825>.
This package provides utility functions for, and drawing on, the data.table package. The package also collates useful miscellaneous functions extending base R not available elsewhere. The name is a portmanteau of utils and the author.
High level functions for hyperplane fitting (hyper.fit()) and visualising (hyper.plot2d() / hyper.plot3d()). In simple terms this allows the user to produce robust 1D linear fits for 2D x vs y type data, and robust 2D plane fits to 3D x vs y vs z type data. This hyperplane fitting works generically for any N-1 hyperplane model being fit to a N dimension dataset. All fits include intrinsic scatter in the generative model orthogonal to the hyperplane.
This package provides functions to compute small area estimates based on a basic area or unit-level model. The model is fit using restricted maximum likelihood, or in a hierarchical Bayesian way. In the latter case numerical integration is used to average over the posterior density for the between-area variance. The output includes the model fit, small area estimates and corresponding mean squared errors, as well as some model selection measures. Additional functions provide means to compute aggregate estimates and mean squared errors, to minimally adjust the small area estimates to benchmarks at a higher aggregation level, and to graphically compare different sets of small area estimates.
Higher-order latent trait theory (item response theory). We implement the generalized partial credit model with a second-order latent trait structure. Latent regression can be done on the second-order latent trait. For a pre-print of the methods, see, "Latent Regression in Higher-Order Item Response Theory with the R Package hlt" <https://mkleinsa.github.io/doc/hlt_proof_draft_brmic.pdf>.
This package provides a consistent API for hypothesis testing built on principles from Structure and Interpretation of Computer Programs': data abstraction, closure (combining tests yields tests), and higher-order functions (transforming tests). Implements z-tests, Wald tests, likelihood ratio tests, Fisher's method for combining p-values, and multiple testing corrections. Designed for use by other packages that want to wrap their hypothesis tests in a consistent interface.