Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Calculates and differentiates probabilities and density of (conditional) multivariate normal distribution and Gaussian copula (with various marginal distributions) using methods described in A. Genz (2004) <doi:10.1023/B:STCO.0000035304.20635.31>, A. Genz, F. Bretz (2009) <doi:10.1007/978-3-642-01689-9>, H. I. Gassmann (2003) <doi:10.1198/1061860032283> and E. Kossova, B. Potanin (2018) <https://ideas.repec.org/a/ris/apltrx/0346.html>.
Transferring over a code base from Matlab to R is often a repetitive and inefficient use of time. This package provides a translator for Matlab / Octave code into R code. It does some syntax changes, but most of the heavy lifting is in the function changes since the languages are so similar. Options for different data structures and the functions that can be changed are given. The Matlab code should be mostly in adherence to the standard style guide but some effort has been made to accommodate different number of spaces and other small syntax issues. This will not make the code more R friendly and may not even run afterwards. However, the rudimentary syntax, base function and data structure conversion is done quickly so that the maintainer can focus on changes to the design structure.
This package provides a data package containing public domain information on requests made by the MuckRock (https://www.muckrock.com/) project under the United States Freedom of Information Act.
Surface topography calculations of Dirichlet's normal energy, relief index, surface slope, and orientation patch count for teeth using scans of enamel caps. Importantly, for the relief index and orientation patch count calculations to work, the scanned tooth files must be oriented with the occlusal plane parallel to the x and y axes, and perpendicular to the z axis. The files should also be simplified, and smoothed in some other software prior to uploading into R.
Data sets from a variety of biological sample matrices, analysed using a number of mass spectrometry based metabolomic analytical techniques. The example data sets are stored remotely using GitHub releases <https://github.com/aberHRML/metaboData/releases> which can be accessed from R using the package. The package also includes the abr1 FIE-MS data set from the FIEmspro package <https://users.aber.ac.uk/jhd/> <doi:10.1038/nprot.2007.511>.
For single tensor data, any matrix factorization method can be specified the matricised tensor in each dimension by Multi-way Component Analysis (MWCA). An originally extended MWCA is also implemented to specify and decompose multiple matrices and tensors simultaneously (CoupledMWCA). See the reference section of GitHub README.md <https://github.com/rikenbit/mwTensor>, for details of the methods.
Analyzes adverse events in clinical trials using the metalite data structure. The package simplifies the workflow to create production-ready tables, listings, and figures discussed in the adverse events analysis chapters of "R for Clinical Study Reports and Submission" by Zhang et al. (2022) <https://r4csr.org/>.
This package provides a comprehensive suite for assessing multivariate normality using six statistical tests (Mardia, Henzeâ Zirkler, Henzeâ Wagner, Royston, Doornikâ Hansen, Energy). Also includes univariate diagnostics, bivariate density visualization, robust outlier detection, power transformations (e.g., Boxâ Cox, Yeoâ Johnson), and imputation strategies ("mean", "median", "mice") for handling missing data. Bootstrap resampling is supported for selected tests to improve p-value accuracy in small samples. Diagnostic plots are available via both ggplot2 and interactive plotly visualizations. See Korkmaz et al. (2014) <https://journal.r-project.org/articles/RJ-2014-031/RJ-2014-031.pdf>.
Implementation of Multiple Comparison Procedures with Modeling (MCP-Mod) procedure with bias-corrected estimators and second-order covariance matrices as described in Diniz, Gallardo and Magalhaes (2023) <doi:10.1002/pst.2303>.
Create native charts for Microsoft PowerPoint and Microsoft Word documents. These can then be edited and annotated. Functions are provided to let users create charts, modify and format their content. The chart's underlying data is automatically saved within the Word document or PowerPoint presentation. It extends package officer that does not contain any feature for Microsoft native charts production.
This package implements a Monte Carlo Based Heterogeneity Test for standardized mean differences (d), Fisher-transformed Pearson's correlations (r), and natural-logarithm-transformed odds ratio (OR) in Meta-Analysis Studies. Depending on the presence of moderators, this Monte Carlo Based Test can be implemented in the random or mixed-effects model. This package uses rma() function from the R package metafor to obtain parameter estimates and likelihood, so installation of R package metafor is required. This approach refers to the studies of Hedges (1981) <doi:10.3102/10769986006002107>, Hedges & Olkin (1985, ISBN:978-0123363800), Silagy, Lancaster, Stead, Mant, & Fowler (2004) <doi:10.1002/14651858.CD000146.pub2>, Viechtbauer (2010) <doi:10.18637/jss.v036.i03>, and Zuckerman (1994, ISBN:978-0521432009).
Framework for merging and disambiguating event data based on spatiotemporal co-occurrence and secondary event characteristics. It can account for intrinsic "fuzziness" in the coding of events, varying event taxonomies and different geo-precision codes.
Estimation equations are from a variety of sources and associated error estimation.
The goal of midr is to provide a model-agnostic method for interpreting and explaining black-box predictive models by creating a globally interpretable surrogate model. The package implements Maximum Interpretation Decomposition (MID), a functional decomposition technique that finds an optimal additive approximation of the original model. This approximation is achieved by minimizing the squared error between the predictions of the black-box model and the surrogate model. The theoretical foundations of MID are described in Iwasawa & Matsumori (2025) [Forthcoming], and the package itself is detailed in Asashiba et al. (2025) <doi:10.48550/arXiv.2506.08338>.
Helper functions that interface with the system utilities to learn about the local build environment. Lets you explore make rules to test the local configuration, or query pkg-config to find compiler flags and libs needed for building packages with external dependencies. Also contains tools to analyze which libraries that a installed R package linked to by inspecting output from ldd in combination with information from your distribution package manager, e.g. rpm or dpkg'.
Defines classes and methods to learn models and use them to predict binary outcomes. These are generic tools, but we also include specific examples for many common classifiers.
This package provides methods for quality control and exploratory analysis of surface water quality data collected in Massachusetts, USA. Functions are developed to facilitate data formatting for the Water Quality Exchange Network <https://www.epa.gov/waterdata/water-quality-data-upload-wqx> and reporting of data quality objectives to state agencies. Quality control methods are from Massachusetts Department of Environmental Protection (2020) <https://www.mass.gov/orgs/massachusetts-department-of-environmental-protection>.
Meta-analysis of generalized additive models and generalized additive mixed models. A typical use case is when data cannot be shared across locations, and an overall meta-analytic fit is sought. metagam provides functionality for removing individual participant data from models computed using the mgcv and gamm4 packages such that the model objects can be shared without exposing individual data. Furthermore, methods for meta-analysing these fits are provided. The implemented methods are described in Sorensen et al. (2020), <doi:10.1016/j.neuroimage.2020.117416>, extending previous works by Schwartz and Zanobetti (2000) and Crippa et al. (2018) <doi:10.6000/1929-6029.2018.07.02.1>.
This package provides functions and datasets to support Smilde, Næs and Liland (2021, ISBN: 978-1-119-60096-1) "Multiblock Data Fusion in Statistics and Machine Learning - Applications in the Natural and Life Sciences". This implements and imports a large collection of methods for multiblock data analysis with common interfaces, result- and plotting functions, several real data sets and six vignettes covering a range different applications.
Models and predicts multiple output features in single random forest considering the linear relation among the output features, see details in Rahman et al (2017)<doi:10.1093/bioinformatics/btw765>.
Generates mid upper arm circumference (MUAC) and body mass index (BMI) for age z-scores and percentiles based on LMS method for children and adolescents up to 19 years that can be used to assess nutritional and health status and define risk of adverse health events.
High-dimensional data integration is a critical but difficult problem in genomics research because of potential biases from high-throughput experiments. We present MANCIE, a computational method for integrating two genomic data sets with homogenous dimensions from different sources based on a PCA procedure as an approximation to a Bayesian approach.
Many tools for making, modifying, marking, measuring, and motifs and memberships of many different types of networks. All functions operate with matrices, edge lists, and igraph', network', and tidygraph objects, on directed, multiplex, multimodal, signed, and other networks. The package includes functions for importing and exporting, creating and generating networks, modifying networks and node and tie attributes, and describing networks with sensible defaults.
This package provides functions to calculate Unique Trait Combinations (UTC) and scaled Unique Trait Combinations (sUTC) as measures of multivariate richness. The package can also calculate beta-diversity for trait richness and can partition this into nestedness-related and turnover components. The code will also calculate several measures of overlap. See Keyel and Wiegand (2016) <doi:10.1111/2041-210X.12558> for more details.