Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
It provides ensemble capabilities to supervised and unsupervised learning models predictions without using training labels. It decides the relative weights of the different models predictions by using best models predictions as response variable and rest of the mo. User can decide the best model, therefore, It provides freedom to user to ensemble models based on their design solutions.
Neighbourhood functions are key components of local-search algorithms such as Simulated Annealing or Threshold Accepting. These functions take a solution and return a slightly-modified copy of it, i.e. a neighbour. The package provides a function neighbourfun() that constructs such neighbourhood functions, based on parameters such as admissible ranges for elements in a solution. Supported are numeric and logical solutions. The algorithms were originally created for portfolio-optimisation applications, but can be used for other models as well. Several recipes for neighbour computations are taken from "Numerical Methods and Optimization in Finance" by M. Gilli, D. Maringer and E. Schumann (2019, ISBN:978-0128150658).
Updating the now 10-year-old nycflights13 data package. It contains information about all flights that departed from the three main New York City airports in 2023 and metadata on airlines, airports, weather, and planes.
Nonparametric methods for smoothing regression function data with change-points, utilizing range kernels for iterative and anisotropic smoothing methods. For further details, see the paper by John R.J. Thompson (2024) <doi:10.1080/02664763.2024.2352759>.
Facilitates network clustering and evaluation of cluster configurations.
This package provides a collection of common univariate bounded probability distributions transformed to the unbounded real line, for the purpose of increased MCMC efficiency.
This package implements various simple function utilities and flexible pipelines to generate circular images for visualizing complex genomic and network data analysis features.
National Statistical Office of Mongolia (NSO) is the national statistical service and an organization of Mongolian government. NSO provides open access to official data via its API <http://opendata.1212.mn/en/doc>. The package NSO1212 has functions for accessing the API service. The functions are compatible with the API v2.0 and get data sets and its detailed informations from the API.
Framework is devoted to mining numerical association rules through the utilization of nature-inspired algorithms for optimization. Drawing inspiration from the NiaARM Python and the NiaARM Julia packages, this repository introduces the capability to perform numerical association rule mining in the R programming language. Fister Jr., Iglesias, Galvez, Del Ser, Osaba and Fister (2018) <doi:10.1007/978-3-030-03493-1_9>.
The Needleman-Wunsch global alignment algorithm can be used to find approximate matches between sample names in different data sets. See Wang et al. (2010) <doi:10.4137/CIN.S5613>.
This package provides a Modern and Flexible Neo4J Driver, allowing you to query data on a Neo4J server and handle the results in R. It's modern in the sense it provides a driver that can be easily integrated in a data analysis workflow, especially by providing an API working smoothly with other data analysis and graph packages. It's flexible in the way it returns the results, by trying to stay as close as possible to the way Neo4J returns data. That way, you have the control over the way you will compute the results. At the same time, the result is not too complex, so that the "heavy lifting" of data wrangling is not left to the user.
This package infers species associations from community matrices. Uses local and (optional) regional-scale co-occurrence data by comparing observed partial correlation coefficients between species to those estimated from regional species distributions. Extends Gaussian graphical models to a null modeling framework. Provides interface to a variety of inverse covariance matrix estimation methods.
Based on Natural Earth <https://www.naturalearthdata.com/>, a subset of countries can easily be selected with their administrative boundaries, joined with an external data frame and plotted as a thematic map.
This package provides a set of functions to simulate National Football League seasons including the sophisticated tie-breaking procedures.
Calculates spatial pattern analysis using a T-square sample procedure. This method is based on two measures "x" and "y". "x" - Distance from the random point to the nearest individual. "y" - Distance from individual to its nearest neighbor. This is a methodology commonly used in phytosociology or marine benthos ecology to analyze the species distribution (random, uniform or clumped patterns). Ludwig & Reynolds (1988, ISBN:0471832359).
This package performs nonparametric estimation in mixture cure models, and significance tests for the cure probability. For details, see López-Cheda et al. (2017a) <doi:10.1016/j.csda.2016.08.002> and López-Cheda et al. (2017b) <doi:10.1007/s11749-016-0515-1>.
This package provides functions for Bayesian analysis of data from randomized experiments with non-compliance. The functions are based on the models described in Imbens and Rubin (1997) <doi:10.1214/aos/1034276631>. Currently only two types of outcome models are supported: binary outcomes and normally distributed outcomes. Models can be fit with and without the exclusion restriction and/or the strong access monotonicity assumption. Models are fit using the data augmentation algorithm as described in Tanner and Wong (1987) <doi:10.2307/2289457>.
Designed for association studies in nested association mapping (NAM) panels, experimental and random panels. The method is described by Xavier et al. (2015) <doi:10.1093/bioinformatics/btv448>. It includes tools for genome-wide associations of multiple populations, marker quality control, population genetics analysis, genome-wide prediction, solving mixed models and finding variance components through likelihood and Bayesian methods.
Converts number spellings into their equivalent numbers. Supports numbers written in English, French, or Spanish.
This package contains a collection of functions for performing different kinds of calculation that are of interest to someone following a diet plan. Calculators for the Basal Metabolic Rate are based on Mifflin et al. (1990) <doi:10.1093/ajcn/51.2.241> and McArdle, W. D., Katch, F. I., & Katch, V. L. (2010, ISBN:9780812109917).
It names the R Markdown chunks of files based on the filename.
Base package for Neuroconductor', which includes many helper functions that interact with objects of class nifti', implemented by package oro.nifti', for reading/writing and also other manipulation functions.
It provides a framework and a fast and simple way for researchers to evaluate methods (particularly some data-driven methods or their own methods) and then select a best one for data normalization in the gene expression analysis, based on the consistency of metrics and the consistency of datasets. Zhenfeng Wu, Weixiang Liu, Xiufeng Jin, Deshui Yu, Hua Wang, Gustavo Glusman, Max Robinson, Lin Liu, Jishou Ruan and Shan Gao (2018) <doi:10.1101/251140>.
The number of distinct alleles observed in a DNA mixture is informative of the number of contributors to the mixture. The package provides methods for computing the probability distribution of the number of distinct alleles in a mixture for a given set of allele frequencies. The mixture contributors may be related according to a provided pedigree.