Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides support for automation and visualization of flow cytometry data analysis pipelines. In the current state, the package focuses on the preprocessing and quality control part. The framework is based on two main S4 classes, i.e. CytoPipeline and CytoProcessingStep. The pipeline steps are linked to corresponding R functions - that are either provided in the CytoPipeline package itself, or exported from a third party package, or coded by the user her/himself. The processing steps need to be specified centrally and explicitly using either a json input file or through step by step creation of a CytoPipeline object with dedicated methods. After having run the pipeline, obtained results at all steps can be retrieved and visualized thanks to file caching (the running facility uses a BiocFileCache implementation). The package provides also specific visualization tools like pipeline workflow summary display, and 1D/2D comparison plots of obtained flowFrames at various steps of the pipeline.
This package implements topological gene set analysis using a two-step empirical approach. It exploits graph decomposition theory to create a junction tree and reconstruct the most relevant signal path. In the first step clipper selects significant pathways according to statistical tests on the means and the concentration matrices of the graphs derived from pathway topologies. Then, it "clips" the whole pathway identifying the signal paths having the greatest association with a specific phenotype.
The software formalises a framework for classification and survival model evaluation in R. There are four stages; Data transformation, feature selection, model training, and prediction. The requirements of variable types and variable order are fixed, but specialised variables for functions can also be provided. The framework is wrapped in a driver loop that reproducibly carries out a number of cross-validation schemes. Functions for differential mean, differential variability, and differential distribution are included. Additional functions may be developed by the user, by creating an interface to the framework.
CBN2Path package provides a unifying interface to facilitate CBN-based quantification, analysis and visualization of cancer progression pathways.
Genomic coordinates of CTCF binding sites, with strand orientation (directionality of binding). Position weight matrices (PWMs) from JASPAR, HOCOMOCO, CIS-BP, CTCFBSDB, SwissRegulon, Jolma 2013, were used to uniformly predict CTCF binding sites using FIMO (default settings) on human (hg18, hg19, hg38, T2T) and mouse (mm9, mm10, mm39) genome assemblies. Extra columns include motif/PWM name (e.g., MA0139.1), score, p-value, q-value, and the motif sequence. It is recommended to filter FIMO-predicted sites by 1e-6 p-value threshold instead of using the default 1e-4 threshold. Experimentally obtained CTCF-bound cis-regulatory elements from ENCODE SCREEN and predicted CTCF sites from CTCFBSDB are also included. Selected data are lifted over from a different genome assembly as we demonstrated liftOver is a viable option to obtain CTCF coordinates in different genome assemblies. CTCF sites obtained using JASPAR's MA0139.1 PWM and filtered at 1e-6 p-value threshold are recommended.
Affymetrix clariomsratht annotation data (chip clariomsrathttranscriptcluster) assembled using data from public repositories.
clustSIGNAL: clustering of Spatially Informed Gene expression with Neighbourhood Adapted Learning. A tool for adaptively smoothing and clustering gene expression data. clustSIGNAL uses entropy to measure heterogeneity of cell neighbourhoods and performs a weighted, adaptive smoothing, where homogeneous neighbourhoods are smoothed more and heterogeneous neighbourhoods are smoothed less. This not only overcomes data sparsity but also incorporates spatial context into the gene expression data. The resulting smoothed gene expression data is used for clustering and could be used for other downstream analyses.
Variance Stabilized Transformation of Read Counts derived from Bgee RNA-Seq Expression Data. Expression Data includes annotations and is across 6 species (Homo sapiens, Mus musculus, Rattus norvegicus, Danio rerio, Drosophila melanogaster, and Caenorhabditis elegans) and across more than 132 tissues. The data is represented as a RData files and is available in ExperimentHub.
This package provides a support vector machine approach to identifying and filtering low quality cells from single-cell RNA-seq datasets.
CNViz takes probe, gene, and segment-level log2 copy number ratios and launches a Shiny app to visualize your sample's copy number profile. You can also integrate loss of heterozygosity (LOH) and single nucleotide variant (SNV) data.
Base annotation databases for chicken, intended ONLY to be used by AnnotationDbi to produce regular annotation packages.
This package provides a normalization tool for RNA-Seq data, implementing the conditional quantile normalization method.
References made from external single-cell mRNA sequencing data sets, stored as average gene expression matrices. For use with clustifyr <https://bioconductor.org/packages/clustifyr> to assign cell type identities.
Clomial fits binomial distributions to counts obtained from Next Gen Sequencing data of multiple samples of the same tumor. The trained parameters can be interpreted to infer the clonal structure of the tumor.
This package contains infrastructure for benchmarking analysis methods and access to single cell mixture benchmarking data. It provides a framework for organising analysis methods and testing combinations of methods in a pipeline without explicitly laying out each combination. It also provides utilities for sampling and filtering SingleCellExperiment objects, constructing lists of functions with varying parameters, and multithreaded evaluation of analysis methods.
Cross-Species Investigation and Analysis (CoSIA) is a package that provides researchers with an alternative methodology for comparing across species and tissues using normal wild-type RNA-Seq Gene Expression data from Bgee. Using RNA-Seq Gene Expression data, CoSIA provides multiple visualization tools to explore the transcriptome diversity and variation across genes, tissues, and species. CoSIA uses the Coefficient of Variation and Shannon Entropy and Specificity to calculate transcriptome diversity and variation. CoSIA also provides additional conversion tools and utilities to provide a streamlined methodology for cross-species comparison.
Affymetrix Affymetrix Chicken Array annotation data (chip chicken) assembled using data from public repositories.
It fits correlation motif model to multiple studies to detect study specific differential expression patterns.
ChIPseqR identifies protein binding sites from ChIP-seq and nucleosome positioning experiments. The model used to describe binding events was developed to locate nucleosomes but should flexible enough to handle other types of experiments as well.
This package encapsulate many functions to conduct a differential topology analysis. It focuses on analyzing an omic dataset with multiple conditions. While the package is mostly geared toward scRNASeq, it does not place any restriction on the actual input format.
This package provides a general framework for the simulation of ChIP-seq data. Although currently focused on nucleosome positioning the package is designed to support different types of experiments.
This package provides a collection of software tools for dealing with co-citation data.
Affymetrix Affymetrix Canine_2 Array annotation data (chip canine2) assembled using data from public repositories.
This package provides a curated dataset of RNA-Seq samples. The samples are MDI-induced pre-phagocytes (3T3-L1) at different time points/stage of differentiation. The package document the data collection, pre-processing and processing. In addition to the documentation, the package contains the scripts that was used to generated the data.