Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Text categorization based on n-grams.
Enables the analysis of spectroscopy data such as infrared ('IR'), Raman, and nuclear magnetic resonance ('NMR') using the tidy data framework from the tidyverse'. The tidyspec package provides functions for data transformation, normalization, baseline correction, smoothing, derivatives, and both interactive and static visualization. It promotes structured, reproducible workflows for spectral data exploration and preprocessing. Implemented methods include Savitzky and Golay (1964) "Smoothing and Differentiation of Data by Simplified Least Squares Procedures" <doi:10.1021/ac60214a047>, Sternberg (1983) "Biomedical Image Processing" <https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1654163>, Zimmermann and Kohler (1996) "Baseline correction using the rolling ball algorithm" <doi:10.1016/0168-583X(95)00908-6>, Beattie and Esmonde-White (2021) "Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra" <doi:10.1177/0003702820987847>, Wickham et al. (2019) "Welcome to the tidyverse" <doi:10.21105/joss.01686>, and Kuhn, Wickham and Hvitfeldt (2024) "recipes: Preprocessing and Feature Engineering Steps for Modeling" <https://CRAN.R-project.org/package=recipes>.
This package provides a new measure of similarity between a pair of mass spectrometry (MS) experiments, called truncated rank correlation (TRC). To provide a robust metric of similarity in noisy high-dimensional data, TRC uses truncated top ranks (or top m-ranks) for calculating correlation. Truncated rank correlation as a robust measure of test-retest reliability in mass spectrometry data. For more details see Lim et al. (2019) <doi:10.1515/sagmb-2018-0056>.
The goal of tor (to-R) is to help you to import multiple files from a single directory at once, and to do so as quickly, flexibly, and simply as possible.
This package provides a tidy workflow for generating, estimating, reporting, and plotting structural equation models using lavaan', OpenMx', or Mplus'. Throughout this workflow, elements of syntax, results, and graphs are represented as tidy data, making them easy to customize. Includes functionality to estimate latent class analyses, and to plot dagitty and igraph objects.
An open-access tool/framework that constitutes the core functions to analyze terrestrial water cycle data across various spatio-temporal scales.
This package provides a tm Source to create corpora from a corpus prepared in the format used by the Alceste application (i.e. a single text file with inline meta-data). It is able to import both text contents and meta-data (starred) variables.
Tabu search algorithm for binary configurations. A basic version of the algorithm as described by Fouskakis and Draper (2007) <doi:10.1111/j.1751-5823.2002.tb00174.x>.
Prediction intervals for ARIMA and structural time series models using importance sampling approach with uninformative priors for model parameters, leading to more accurate coverage probabilities in frequentist sense. Instead of sampling the future observations and hidden states of the state space representation of the model, only model parameters are sampled, and the method is based solving the equations corresponding to the conditional coverage probability of the prediction intervals. This makes method relatively fast compared to for example MCMC methods, and standard errors of prediction limits can also be computed straightforwardly.
Statistical extreme value modelling of threshold excesses, maxima and multivariate extremes. Univariate models for threshold excesses and maxima are the Generalised Pareto, and Generalised Extreme Value model respectively. These models may be fitted by using maximum (optionally penalised-)likelihood, or Bayesian estimation, and both classes of models may be fitted with covariates in any/all model parameters. Model diagnostics support the fitting process. Graphical output for visualising fitted models and return level estimates is provided. For serially dependent sequences, the intervals declustering algorithm of Ferro and Segers (2003) <doi:10.1111/1467-9868.00401> is provided, with diagnostic support to aid selection of threshold and declustering horizon. Multivariate modelling is performed via the conditional approach of Heffernan and Tawn (2004) <doi:10.1111/j.1467-9868.2004.02050.x>, with graphical tools for threshold selection and to diagnose estimation convergence.
R implementation of the software tools developed in the H-CUP (Healthcare Cost and Utilization Project) <https://hcup-us.ahrq.gov> and AHRQ (Agency for Healthcare Research and Quality) <https://www.ahrq.gov>. It currently contains functions for mapping ICD-9 codes to the AHRQ comorbidity measures and translating ICD-9 (resp. ICD-10) codes to ICD-10 (resp. ICD-9) codes based on GEM (General Equivalence Mappings) from CMS (Centers for Medicare and Medicaid Services).
This package provides a teal_data class as a unified data model for teal applications focusing on reproducibility and relational data.
An object model for source text and translations. Find and extract translatable strings. Provide translations and seamlessly retrieve them at runtime.
This package provides utility functions for plotting. Includes functions for color manipulation, plot customization, panel size control, data optimization for plots, and layout adjustments.
An extension to the R tidy data environment for automated machine learning. The package allows fitting and cross validation of linear regression and classification algorithms on grouped data.
Analysis of treatment effects in clinical trials with time-to-event outcomes is complicated by intercurrent events. This package implements methods for estimating and inferring the cumulative incidence functions for time-to-event (TTE) outcomes with intercurrent events (ICE) under the five strategies outlined in the ICH E9 (R1) addendum, see Deng (2025) <doi:10.1002/sim.70091>. This package can be used for analyzing data from both randomized controlled trials and observational studies. In general, the data involve a primary outcome event and, potentially, an intercurrent event. Two data structures are allowed: competing risks, where only the time to the first event is recorded, and semicompeting risks, where the times to both the primary outcome event and intercurrent event (or censoring) are recorded. For estimation methods, users can choose nonparametric estimation (which does not use covariates) and semiparametrically efficient estimation.
Data collected on movement behavior is often in the form of time- stamped latitude/longitude coordinates sampled from the underlying movement behavior. These data can be compressed into a set of segments via the Top- Down Time Ratio Segmentation method described in Meratnia and de By (2004) <doi:10.1007/978-3-540-24741-8_44> which, with some loss of information, can both reduce the size of the data as well as provide corrective smoothing mechanisms to help reduce the impact of measurement error. This is an improvement on the well-known Douglas-Peucker algorithm for segmentation that operates not on the basis of perpendicular distances. Top-Down Time Ratio segmentation allows for disparate sampling time intervals by calculating the distance between locations and segments with respect to time. Provided a trajectory with timestamps, tdtr() returns a set of straight- line segments that can represent the full trajectory. McCool, Lugtig, and Schouten (2022) <doi:10.1007/s11116-022-10328-2> describe this method as implemented here in more detail.
This package provides functions for estimating times of common ancestry and molecular clock rates of evolution using a variety of evolutionary models, parametric and nonparametric bootstrap confidence intervals, methods for detecting outlier lineages, root-to-tip regression, and a statistical test for selecting molecular clock models. For more details see Volz and Frost (2017) <doi:10.1093/ve/vex025>.
This package implements a decomposition of the two-way fixed effects instrumental variable estimator into all possible Wald difference-in-differences estimators. Provides functions to summarize the contribution of different cohort comparisons to the overall two-way fixed effects instrumental variable estimate, with or without controls. The method is described in Miyaji (2024) <doi:10.48550/arXiv.2405.16467>.
The tcplfit2 R package performs basic concentration-response curve fitting. The original tcplFit() function in the tcpl R package performed basic concentration-response curvefitting to 3 models. With tcplfit2, the core tcpl concentration-response functionality has been expanded to process diverse high-throughput screen (HTS) data generated at the US Environmental Protection Agency, including targeted ToxCast, high-throughput transcriptomics (HTTr) and high-throughput phenotypic profiling (HTPP). tcplfit2 can be used independently to support analysis for diverse chemical screening efforts.
Generate tables, listings, and graphs (TLG) using tidyverse'. Tables can be created functionally, using a standard TLG process, or by specifying table and column metadata to create generic analysis summaries. The envsetup package can also be leveraged to create environments for table creation.
This package provides tools to perform multiple comparison analyses, based on the well-known Tukey's "Honestly Significant Difference" (HSD) test. In models involving interactions, TukeyC stands out from other R packages by implementing intuitive and easy-to-use functions. In addition to accommodating traditional R methods such as lm() and aov(), it has also been extended to objects of the lmer() class, that is, mixed models with fixed effects. For more details see Tukey (1949) <doi:10.2307/3001913>.
Find similarities between texts using the Smith-Waterman algorithm. The algorithm performs local sequence alignment and determines similar regions between two strings. The Smith-Waterman algorithm is explained in the paper: "Identification of common molecular subsequences" by T.F.Smith and M.S.Waterman (1981), available at <doi:10.1016/0022-2836(81)90087-5>. This package implements the same logic for sequences of words and letters instead of molecular sequences.
Combine a list of taxa with a phylogeny to generate a starting tree for use in total evidence dating analyses.