Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
TSON, short for Typed JSON, is a binary-encoded serialization of JSON like document that support JavaScript typed data (https://github.com/tercen/TSON).
This package provides an interface to the OAuth 1.0 specification allowing users to authenticate via OAuth to the server of their choice.
We provide a toolbox to fit and simulate a univariate or multivariate damped random walk process that is also known as an Ornstein-Uhlenbeck process or a continuous-time autoregressive model of the first order, i.e., CAR(1) or CARMA(1, 0). This process is suitable for analyzing univariate or multivariate time series data with irregularly-spaced observation times and heteroscedastic measurement errors. When it comes to the multivariate case, the number of data points (measurements/observations) available at each observation time does not need to be the same, and the length of each time series can vary. The number of time series data sets that can be modeled simultaneously is limited to ten in this version of the package. We use Kalman-filtering to evaluate the resulting likelihood function, which leads to a scalable and efficient computation in finding maximum likelihood estimates of the model parameters or in drawing their posterior samples. Please pay attention to loading the data if this package is used for astronomical data analyses; see the details in the manual. Also see Hu and Tak (2020) <arXiv:2005.08049>.
This package provides a method to decompose a univariate time series into meaningful subcomponents for analysis and denoising.
This package provides functions to load and manage data from Apple Ads accounts using the Apple Ads Campaign Management API <https://developer.apple.com/documentation/apple_ads>.
This package provides C++ header files to deal with color conversion from some color spaces to hexadecimal with Rcpp', and exports some color mapping functions for usage in R. Also exports functions to convert colors from the HSLuv color space for usage in R. HSLuv is a human-friendly alternative to HSL.
Area under the receiver operating characteristic curves (AUC) statistic for significance test. Variance and covariance of AUC values used to assess the 95% Confidence interval (CI) and p-value of the AUC difference for both nested and non-nested model.
Estimates the pooled (unadjusted) Receiver Operating Characteristic (ROC) curve, the covariate-adjusted ROC (AROC) curve, and the covariate-specific/conditional ROC (cROC) curve by different methods, both Bayesian and frequentist. Also, it provides functions to obtain ROC-based optimal cutpoints utilizing several criteria. Based on Erkanli, A. et al. (2006) <doi:10.1002/sim.2496>; Faraggi, D. (2003) <doi:10.1111/1467-9884.00350>; Gu, J. et al. (2008) <doi:10.1002/sim.3366>; Inacio de Carvalho, V. et al. (2013) <doi:10.1214/13-BA825>; Inacio de Carvalho, V., and Rodriguez-Alvarez, M.X. (2022) <doi:10.1214/21-STS839>; Janes, H., and Pepe, M.S. (2009) <doi:10.1093/biomet/asp002>; Pepe, M.S. (1998) <http://www.jstor.org/stable/2534001?seq=1>; Rodriguez-Alvarez, M.X. et al. (2011a) <doi:10.1016/j.csda.2010.07.018>; Rodriguez-Alvarez, M.X. et al. (2011a) <doi:10.1007/s11222-010-9184-1>. Please see Rodriguez-Alvarez, M.X. and Inacio, V. (2021) <doi:10.32614/RJ-2021-066> for more details.
An extension package for sparklyr that provides an R interface to H2O Sparkling Water machine learning library (see <https://github.com/h2oai/sparkling-water> for more information).
Real-time quantitative polymerase chain reaction (qPCR) data by Rutledge et al. (2004) <doi:10.1093/nar/gnh177> in tidy format. The data comprises a six-point, ten-fold dilution series, repeated in five independent runs, for two different amplicons. In each run, each standard concentration is replicated four times. For the original raw data file see the Supplementary Data section: <https://academic.oup.com/nar/article/32/22/e178/2375678#supplementary-data>.
This package provides a collection of implementations of semi-supervised classifiers and methods to evaluate their performance. The package includes implementations of, among others, Implicitly Constrained Learning, Moment Constrained Learning, the Transductive SVM, Manifold regularization, Maximum Contrastive Pessimistic Likelihood estimation, S4VM and WellSVM.
Fetches NCBI data (RefSeq <https://www.ncbi.nlm.nih.gov/refseq/> database) and provides an environment to extract information at the level of gene, mRNA or protein accessions.
The Linear Programming via Regularized Least Squares (LPPinv) is a two-stage estimation method that reformulates linear programs as structured least-squares problems. Based on the Convex Least Squares Programming (CLSP) framework, LPPinv solves linear inequality, equality, and bound constraints by (1) constructing a canonical constraint system and computing a pseudoinverse projection, followed by (2) a convex-programming correction stage to refine the solution under additional regularization (e.g., Lasso, Ridge, or Elastic Net). LPPinv is intended for underdetermined and ill-posed linear problems, for which standard solvers fail.
Determine the number of dimensions to retain in exploratory factor analysis. The main function, nest(), returns the solution and the plot(nest()) returns a plot.
Interface to the flsgen neutral landscape generator <https://github.com/dimitri-justeau/flsgen>. It allows to - Generate fractal terrain; - Generate landscape structures satisfying user targets over landscape indices; - Generate landscape raster from landscape structures.
This package provides a rolling version of the Latent Dirichlet Allocation, see Rieger et al. (2021) <doi:10.18653/v1/2021.findings-emnlp.201>. By a sequential approach, it enables the construction of LDA-based time series of topics that are consistent with previous states of LDA models. After an initial modeling, updates can be computed efficiently, allowing for real-time monitoring and detection of events or structural breaks.
This package contains various tools to perform and visualize Response Item Networks ('ResIN's'). ResIN binarizes ordered-categorical and qualitative response choices from (survey) data, calculates pairwise associations and maps the location of each item response as a node in a force-directed network. Please refer to <https://www.resinmethod.net/> for more details.
This package provides a list of functions for the statistical analysis and the post-processing of the Markov Chains simulated by ChronoModel (see <http://www.chronomodel.fr> for more information). ChronoModel is a friendly software to construct a chronological model in a Bayesian framework. Its output is a sampled Markov chain from the posterior distribution of dates component the chronology. The functions can also be applied to the analyse of mcmc output generated by Oxcal software.
The handling of an API key (misnomer for password) for protected data can be difficult. This package provides secure convenience functions for entering / handling API keys and pulling data directly into memory. By default it will load from REDCap instances, but other sources are injectable via inversion of control.
OpenRefine (formerly Google Refine') is a popular, open source data cleaning software. This package enables users to programmatically trigger data transfer between R and OpenRefine'. Available functionality includes project import, export and deletion.
Fit and deploy rotation forest models ("Rodriguez, J.J., Kuncheva, L.I., 2006. Rotation forest: A new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1619-1630 <doi:10.1109/TPAMI.2006.211>") for binary classification. Rotation forest is an ensemble method where each base classifier (tree) is fit on the principal components of the variables of random partitions of the feature set.
Fast design of risk parity portfolios for financial investment. The goal of the risk parity portfolio formulation is to equalize or distribute the risk contributions of the different assets, which is missing if we simply consider the overall volatility of the portfolio as in the mean-variance Markowitz portfolio. In addition to the vanilla formulation, where the risk contributions are perfectly equalized subject to no shortselling and budget constraints, many other formulations are considered that allow for box constraints and shortselling, as well as the inclusion of additional objectives like the expected return and overall variance. See vignette for a detailed documentation and comparison, with several illustrative examples. The package is based on the papers: Y. Feng, and D. P. Palomar (2015). SCRIP: Successive Convex Optimization Methods for Risk Parity Portfolio Design. IEEE Trans. on Signal Processing, vol. 63, no. 19, pp. 5285-5300. <doi:10.1109/TSP.2015.2452219>. F. Spinu (2013), An Algorithm for Computing Risk Parity Weights. <doi:10.2139/ssrn.2297383>. T. Griveau-Billion, J. Richard, and T. Roncalli (2013). A fast algorithm for computing High-dimensional risk parity portfolios. <arXiv:1311.4057>.
This package contains convenience functions for working with spatial data across multiple UTM zones, raster-vector operations common in the analysis of conflict data, and converting degrees, minutes, and seconds latitude and longitude coordinates to decimal degrees.
This package performs kernel based estimates on in-memory raster images from the raster package. These kernel estimates include local means variances, modes, and quantiles. All results are in the form of raster images, preserving original resolution and projection attributes.