Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This is a package for the discovery of regulatory regions from Bis-seq data.
Easily visualize and inspect microarrays for spatial artifacts.
This package provides a function for reconstructing DNA methylation values from raw measurements. It iteratively implements the group fused lars to smooth related-by-location methylation values and the constrained least squares to remove probe affinity effect across multiple sequences.
This package provides several functions to explore miRNA sponge (also called ceRNA or miRNA decoy) regulation from putative miRNA-target interactions or/and transcriptomics data (including bulk, single-cell and spatial gene expression data). It provides eight popular methods for identifying miRNA sponge interactions, and an integrative method to integrate miRNA sponge interactions from different methods, as well as the functions to validate miRNA sponge interactions, and infer miRNA sponge modules, conduct enrichment analysis of miRNA sponge modules, and conduct survival analysis of miRNA sponge modules. By using a sample control variable strategy, it provides a function to infer sample-specific miRNA sponge interactions. In terms of sample-specific miRNA sponge interactions, it implements three similarity methods to construct sample-sample correlation network.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Mu11KsubB\_probe\_tab.
The MSstatsLOBD package allows calculation and visualization of limit of blac (LOB) and limit of detection (LOD). We define the LOB as the highest apparent concentration of a peptide expected when replicates of a blank sample containing no peptides are measured. The LOD is defined as the measured concentration value for which the probability of falsely claiming the absence of a peptide in the sample is 0.05, given a probability 0.05 of falsely claiming its presence. These functionalities were previously a part of the MSstats package. The methodology is described in Galitzine (2018) <doi:10.1074/mcp.RA117.000322>.
Estimates gene expressions from several laser scans of the same microarray.
Store minor allele frequency data from the Exome Aggregation Consortium (ExAC release 1.0) for the human genome version GRCh38.
The miaViz package implements functions to visualize TreeSummarizedExperiment objects especially in the context of microbiome analysis. Part of the mia family of R/Bioconductor packages.
This package provides a two-step approach to imputing missing data in metabolomics. Step 1 uses a random forest classifier to classify missing values as either Missing Completely at Random/Missing At Random (MCAR/MAR) or Missing Not At Random (MNAR). MCAR/MAR are combined because it is often difficult to distinguish these two missing types in metabolomics data. Step 2 imputes the missing values based on the classified missing mechanisms, using the appropriate imputation algorithms. Imputation algorithms tested and available for MCAR/MAR include Bayesian Principal Component Analysis (BPCA), Multiple Imputation No-Skip K-Nearest Neighbors (Multi_nsKNN), and Random Forest. Imputation algorithms tested and available for MNAR include nsKNN and a single imputation approach for imputation of metabolites where left-censoring is present.
Microbiome time series simulation with generalized Lotka-Volterra model, Self-Organized Instability (SOI), and other models. Hubbell's Neutral model is used to determine the abundance matrix. The resulting abundance matrix is applied to (Tree)SummarizedExperiment objects.
This package provides a collection of Ovarian Cancer Transcriptomic Datasets that are part of the MetaGxData package compendium.
Codelink Mouse Inflammation 16 Bioarray annotation data (chip mi16cod) assembled using data from public repositories.
This package provides a package containing an environment representing the MG_U74C.cdf file.
It contains functions for estimating the DNA copy number profile using mBPCR with the aim of detecting regions with copy number changes.
This package implements functions for calling methylation for all cytosines in the genome.
This package provides a package containing an environment representing the Mu6500subD.CDF file.
MIRit is an R package that provides several methods for investigating the relationships between miRNAs and genes in different biological conditions. In particular, MIRit allows to explore the functions of dysregulated miRNAs, and makes it possible to identify miRNA-gene regulatory axes that control biological pathways, thus enabling the users to unveil the complexity of miRNA biology. MIRit is an all-in-one framework that aims to help researchers in all the central aspects of an integrative miRNA-mRNA analyses, from differential expression analysis to network characterization.
contains eight technical replicate data set and a three replicate dilution series of the MS Qual/Quant Quality Control Mix standard sample (Sigma-Aldrich, Buchs, Switzerland) measured on five different mass spectrometer platforms at the Functional Genomics Center Zurich.
Extracted features from pathways derived from 8 different databases (KEGG, Reactome, Biocarta, etc.) can be used on transcriptomic, proteomic, and/or metabolomic level to calculate a combined GSEA-based enrichment score.
Agilent annotation data (chip mgug4120a) assembled using data from public repositories.
MetaboLights is one of the main public repositories for storage of metabolomics experiments, which includes analysis results as well as raw data. The MsBackendMetaboLights package provides functionality to retrieve and represent mass spectrometry (MS) data from MetaboLights. Data files are downloaded and cached locally avoiding repetitive downloads. MS data from metabolomics experiments can thus be directly and seamlessly integrated into R-based analysis workflows with the Spectra and MsBackendMetaboLights package.
Package includes functions to analyze and mask microarray expression data.
This package provides a collection of datasets to accompany the R package MOFA and illustrate running and analysing MOFA models.