Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Partitions data points (variables) into communities/clusters, similar to clustering algorithms such as k-means and hierarchical clustering. This package implements a clustering algorithm based on a new metric CORD, defined for high-dimensional parametric or semiparametric distributions. For more details see Bunea et al. (2020), Annals of Statistics <doi:10.1214/18-AOS1794>.
It provides functions to bootstrap Credit Curves from market quotes (Credit Default Swap - CDS - spreads) and price Credit Default Swaps - CDS.
Puzzle game that can be played in the R console. Help the alien to find the ship.
Interact with Condor from R via SSH connection. Files are first uploaded from user machine to submitter machine, and the job is then submitted from the submitter machine to Condor'. Functions are provided to submit, list, and download Condor jobs from R. Condor is an open source high-throughput computing software framework for distributed parallelization of computationally intensive tasks.
This package provides measures of effect sizes for summarized continuous variables as well as diagnostic accuracy statistics for 2x2 table data. Includes functions for Cohen's d, robust effect size, Cohen's q, partial eta-squared, coefficient of variation, odds ratio, likelihood ratios, sensitivity, specificity, positive and negative predictive values, Youden index, number needed to treat, number needed to diagnose, and predictive summary index.
This package provides R routine for the so called two-sample Cramer-Test. This nonparametric two-sample-test on equality of the underlying distributions can be applied to multivariate data as well as univariate data. It offers two possibilities to approximate the critical value both of which are included in this package.
This package provides functions for the input/output and visualization of medical imaging data in the form of CIFTI files <https://www.nitrc.org/projects/cifti/>.
An algorithm for identifying candidate driver combinations in cancer. CRSO is based on a theoretical model of cancer in which a cancer rule is defined to be a collection of two or more events (i.e., alterations) that are minimally sufficient to cause cancer. A cancer rule set is a set of cancer rules that collectively are assumed to account for all of ways to cause cancer in the population. In CRSO every event is designated explicitly as a passenger or driver within each patient. Each event is associated with a patient-specific, event-specific passenger penalty, reflecting how unlikely the event would have happened by chance, i.e., as a passenger. CRSO evaluates each rule set by assigning all samples to a rule in the rule set, or to the null rule, and then calculating the total statistical penalty from all unassigned event. CRSO uses a three phase procedure find the best rule set of fixed size K for a range of Ks. A core rule set is then identified from among the best rule sets of size K as the rule set that best balances rule set size and statistical penalty. Users should consult the crso vignette for an example walk through of a full CRSO run. The full description, of the CRSO algorithm is presented in: Klein MI, Cannataro V, Townsend J, Stern DF and Zhao H. "Identifying combinations of cancer driver in individual patients." BioRxiv 674234 [Preprint]. June 19, 2019. <doi:10.1101/674234>. Please cite this article if you use crso'.
This package provides tools for Delphi's COVIDcast Epidata API: data access, maps and time series plotting, and basic signal processing. The API includes a collection of numerous indicators relevant to the COVID-19 pandemic in the United States, including official reports, de-identified aggregated medical claims data, large-scale surveys of symptoms and public behavior, and mobility data, typically updated daily and at the county level. All data sources are documented at <https://cmu-delphi.github.io/delphi-epidata/api/covidcast.html>.
The biases introduced in association measures, particularly mutual information, are influenced by factors such as tumor purity, mutation burden, and hypermethylation. This package provides the estimation of conditional mutual information (CMI) and its statistical significance with a focus on its application to multi-omics data. Utilizing B-spline functions (inspired by Daub et al. (2004) <doi:10.1186/1471-2105-5-118>), the package offers tools to estimate the association between heterogeneous multi- omics data, while removing the effects of confounding factors. This helps to unravel complex biological interactions. In addition, it includes methods to evaluate the statistical significance of these associations, providing a robust framework for multi-omics data integration and analysis. This package is ideal for researchers in computational biology, bioinformatics, and systems biology seeking a comprehensive tool for understanding interdependencies in omics data.
The reliability of clusters is estimated using random projections. A set of stability measures is provided to assess the reliability of the clusters discovered by a generic clustering algorithm. The stability measures are taylored to high dimensional data (e.g. DNA microarray data) (Valentini, G (2005), <doi:10.1093/bioinformatics/bti817>.
This package provides a companion package to cmstatr <https://cran.r-project.org/package=cmstatr>. cmstatr contains statistical methods that are published in the Composite Materials Handbook, Volume 1 (2012, ISBN: 978-0-7680-7811-4), while cmstatrExt contains statistical methods that are not included in that handbook.
Dissects a package environment or covr coverage object in order to cross reference tested code with the lines that are evaluated, as well as linking those evaluated lines to the documentation that they are described within. Connecting these three pieces of information provides a mechanism of linking tests to documented behaviors.
Create and manipulate study cohorts in data mapped to the Observational Medical Outcomes Partnership Common Data Model.
Checks that students have the correct version of R', R packages, RStudio and other dependencies installed, and that the recommended RStudio configuration has been applied.
The caRamel optimizer has been developed to meet the requirement for an automatic calibration procedure that delivers a family of parameter sets that are optimal with regard to a multi-objective target (Monteil et al. <doi:10.5194/hess-24-3189-2020>).
Wraps the CIRCE (<https://github.com/ohdsi/circe-be>) Java library allowing cohort definition expressions to be edited and converted to Markdown or SQL'.
Population ratio estimator (calibrated) under two-phase random sampling design has gained enormous popularity in the recent time. This package provides functions for estimation population ratio (calibrated) under two phase sampling design, including the approximate variance of the ratio estimator. The improved ratio estimator can be applicable for both the case, when auxiliary data is available at unit level or aggregate level (eg., mean or total) for first phase sampled. Calibration weight of each unit of the second phase sample was calculated. Single and combined inclusion probabilities were also estimated for both phases under two phase random [simple random sampling without replacement (SRSWOR)] sampling. The improved ratio estimator's percentage coefficient of variation was also determined as a measure of accuracy. This package has been developed based on the theoretical development of Islam et al. (2021) and Ozgul (2020) <doi:10.1080/00949655.2020.1844702>.
Dataset containing cumulative COVID-19 deaths (absolute and per 100,000 pop) at the regional level (mostly NUTS 3) for 31 EU/EFTA countries.
Calculation of consensus values for atomic weights, isotope amount ratios, and isotopic abundances with the associated uncertainties using multivariate meta-regression approach for consensus building.
This package provides the basic functionality to interact with the Collatz conjecture. The parameterisation uses the same (P,a,b) notation as Conway's generalisations. Besides the function and reverse function, there is also functionality to retrieve the hailstone sequence, the "stopping time"/"total stopping time", or tree-graph. The only restriction placed on parameters is that both P and a can't be 0. For further reading, see <https://en.wikipedia.org/wiki/Collatz_conjecture>.
Assess the calibration of an existing (i.e. previously developed) multistate model through calibration plots. Calibration is assessed using one of three methods. 1) Calibration methods for binary logistic regression models applied at a fixed time point in conjunction with inverse probability of censoring weights. 2) Calibration methods for multinomial logistic regression models applied at a fixed time point in conjunction with inverse probability of censoring weights. 3) Pseudo-values estimated using the Aalen-Johansen estimator of observed risk. All methods are applied in conjunction with landmarking when required. These calibration plots evaluate the calibration (in a validation cohort of interest) of the transition probabilities estimated from an existing multistate model. While package development has focused on multistate models, calibration plots can be produced for any model which utilises information post baseline to update predictions (e.g. dynamic models); competing risks models; or standard single outcome survival models, where predictions can be made at any landmark time. Please see Pate et al. (2024) <doi:10.1002/sim.10094> and Pate et al. (2024) <https://alexpate30.github.io/calibmsm/articles/Overview.html>.
There are many estimators of false discovery rate. In this package we compute the Nonlocal False Discovery Rate (NFDR) and the estimators of local false discovery rate: Corrected False discovery Rate (CFDR), Re-ranked False Discovery rate (RFDR) and the blended estimator. Bickel, D.R., Rahal, A. (2019) <https://tinyurl.com/kkdc9rk8>.
Produce an averaging estimate/prediction by combining all candidate models for partial linear functional additive models, using multi-fold cross-validation criterion. More details can be referred to arXiv e-Prints via <doi:10.48550/arXiv.2105.00966>.