Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
IsoCorrectoR performs the correction of mass spectrometry data from stable isotope labeling/tracing metabolomics experiments with regard to natural isotope abundance and tracer impurity. Data from both MS and MS/MS measurements can be corrected (with any tracer isotope: 13C, 15N, 18O...), as well as ultra-high resolution MS data from multiple-tracer experiments (e.g. 13C and 15N used simultaneously). See the Bioconductor package IsoCorrectoRGUI for a graphical user interface to IsoCorrectoR. NOTE: With R version 4.0.0, writing correction results to Excel files may currently not work on Windows. However, writing results to csv works as before.
This R package supports the handling and analysis of imaging mass cytometry and other highly multiplexed imaging data. The main functionality includes reading in single-cell data after image segmentation and measurement, data formatting to perform channel spillover correction and a number of spatial analysis approaches. First, cell-cell interactions are detected via spatial graph construction; these graphs can be visualized with cells representing nodes and interactions representing edges. Furthermore, per cell, its direct neighbours are summarized to allow spatial clustering. Per image/grouping level, interactions between types of cells are counted, averaged and compared against random permutations. In that way, types of cells that interact more (attraction) or less (avoidance) frequently than expected by chance are detected.
An annotation package for Illumina's MSA methylation arrays.
Integrative copy number variation (CNV) detection from multiple platform and experimental design.
The iModMix network-based method offers an integrated framework for analyzing multi-omics data, including metabolomics, proteomics, and transcriptomics data, enabling the exploration of intricate molecular associations within heterogeneous biological systems.
The imcdatasets package provides access to publicly available IMC datasets. IMC is a technology that enables measurement of > 40 proteins from tissue sections. The generated images can be segmented to extract single cell data. Datasets typically consist of three elements: a SingleCellExperiment object containing single cell data, a CytoImageList object containing multichannel images and a CytoImageList object containing the cell masks that were used to extract the single cell data from the images.
Hidden Ising models are implemented to identify enriched genomic regions in ChIP-chip data. They can be used to analyze the data from multiple platforms (e.g., Affymetrix, Agilent, and NimbleGen), and the data with single to multiple replicates.
Access to igv.js, the Integrative Genomics Viewer running in a web browser.
Implement in an efficient approach to display the genomic data, relationship, information in an interactive circular genome(Circos) plot. interacCircos are inspired by circosJS', BioCircos.js and NG-Circos and we integrate the modules of circosJS', BioCircos.js and NG-Circos into this R package, based on htmlwidgets framework.
ISLET is a method to conduct signal deconvolution for general -omics data. It can estimate the individual-specific and cell-type-specific reference panels, when there are multiple samples observed from each subject. It takes the input of the observed mixture data (feature by sample matrix), and the cell type mixture proportions (sample by cell type matrix), and the sample-to-subject information. It can solve for the reference panel on the individual-basis and conduct test to identify cell-type-specific differential expression (csDE) genes. It also improves estimated cell type mixture proportions by integrating personalized reference panels.
Illumina Illumina Human Methylation 27k annotation data (chip IlluminaHumanMethylation27k) assembled using data from public repositories.
Implementation of the Ibex algorithm for single-cell embedding based on BCR sequences. The package includes a standalone function to encode BCR sequence information by amino acid properties or sequence order using tensorflow-based autoencoder. In addition, the package interacts with SingleCellExperiment or Seurat data objects.
Illumina Ratv1 annotation data (chip illuminaRatv1) assembled using data from public repositories.
Illumina HumanHT12WGDASLv3 annotation data (chip illuminaHumanWGDASLv3) assembled using data from public repositories.
Illumina HumanHT12v4 annotation data (chip illuminaHumanv4) assembled using data from public repositories.
Illumina HumanWG6v1 annotation data (chip illuminaHumanv1) assembled using data from public repositories.
This package provides example datasets for the iModMix package, including gene, protein, and metabolite partial correlation matrices derived from ccRCC4 and FloresData_K_TK studies. The data are preprocessed and ready to use for testing, demonstrating iModMix workflows, and exploring correlation networks.
Probe sequences from Illumina (ftp.illumina.com) for hm450 probes.
This package conveniently wraps all functions needed to reproduce the figures in the IHW paper (https://www.nature.com/articles/nmeth.3885) and the data analysis in https://rss.onlinelibrary.wiley.com/doi/10.1111/rssb.12411, cf. the arXiv preprint (http://arxiv.org/abs/1701.05179). Thus it is a companion package to the Bioconductor IHW package.
Illumina HumanWG6v2 annotation data (chip illuminaHumanv2) assembled using data from public repositories.
This package provides functions for an Interactive Differential Expression AnaLysis of RNA-sequencing datasets, to extract quickly and effectively information downstream the step of differential expression. A Shiny application encapsulates the whole package. Support for reproducibility of the whole analysis is provided by means of a template report which gets automatically compiled and can be stored/shared.
Characterization of miRNAs and isomiRs, clustering and differential expression.
The packages provides position specific weight matrices (PWMs) for 303 human serine/threonine and 93 tyrosine kinases originally published in Johnson et al. 2023 (doi:10.1038/s41586-022-05575-3) and Yaron-Barir et al. 2024 (doi:10.1038/s41586-024-07407-y). The package includes basic functionality to score user provided phosphosites. It also includes pre-computed PWM scores ("background scores") for a large collection of curated human phosphosites which can be used to rank PWM scores relative to the background scores ("percentile rank").
This package contains the function to find marker genes for image-based spatial transcriptomics data. There are functions to create spatial vectors from the cell and transcript coordiantes, which are passed as inputs to find marker genes. Marker genes are detected for every cluster by two approaches. The first approach is by permtuation testing, which is implmented in parallel for finding marker genes for one sample study. The other approach is to build a linear model for every gene. This approach can account for multiple samples and backgound noise.