Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Perform tensor operations using a concise yet expressive syntax inspired by the Python library of the same name. Reshape, rearrange, and combine multidimensional arrays for scientific computing, machine learning, and data analysis. Einops simplifies complex manipulations, making code more maintainable and intuitive. The original implementation is demonstrated in Rogozhnikov (2022) <https://openreview.net/forum?id=oapKSVM2bcj>.
Standardises and facilitates the use of eleven established stability properties that have been used to assess systemsâ responses to press or pulse disturbances at different ecological levels (e.g. population, community). There are two sets of functions. The first set corresponds to functions that measure stability at any level of organisation, from individual to community and can be applied to a time series of a systemâ s state variables (e.g., body mass, population abundance, or species diversity). The properties included in this set are: invariability, resistance, extent and rate of recovery, persistence, and overall ecological vulnerability. The second set of functions can be applied to Jacobian matrices. The functions in this set measure the stability of a community at short and long time scales. In the short term, the communityâ s response is measured by maximal amplification, reactivity and initial resilience (i.e. initial rate of return to equilibrium). In the long term, stability can be measured as asymptotic resilience and intrinsic stochastic invariability. Figueiredo et al. (2025) <doi:10.32942/X2M053>.
Total Time on Test plot and routines for parameter estimation of any lifetime distribution implemented in R via maximum likelihood (ML) given a data set. It is implemented thinking on parametric survival analysis, but it feasible to use in parameter estimation of probability density or mass functions in any field. The main routines maxlogL and maxlogLreg are wrapper functions specifically developed for ML estimation. There are included optimization procedures such as nlminb and optim from base package, and DEoptim Mullen (2011) <doi:10.18637/jss.v040.i06>. Standard errors are estimated with numDeriv Gilbert (2011) <https://CRAN.R-project.org/package=numDeriv> or the option Hessian = TRUE of optim function.
This package provides functions to prepare and analyse eye tracking data of reading exercises. The functions allow some basic data preparations and code fixations as first and second pass. First passes can be further devided into forward and reading. The package further allows for aggregating fixation times per AOI or per AOI and per type of pass (first forward, first rereading, second). These methods are based on Hyönä, Lorch, and Rinck (2003) <doi:10.1016/B978-044451020-4/50018-9> and Hyönä, and Lorch (2004) <doi:10.1016/j.learninstruc.2004.01.001>. It is also possible to convert between metric length and visual degrees.
This package implements a simple, likelihood-based estimation of the reproduction number (R0) using a branching process with a Poisson likelihood. This model requires knowledge of the serial interval distribution, and dates of symptom onsets. Infectiousness is determined by weighting R0 by the probability mass function of the serial interval on the corresponding day. It is a simplified version of the model introduced by Cori et al. (2013) <doi:10.1093/aje/kwt133>.
This package provides a set of functions to solve Erlang-C model. The Erlang C formula was invented by the Danish Mathematician A.K. Erlang and is used to calculate the number of advisors and the service level.
Parametric proportional hazards fitting with left truncation and right censoring for common families of distributions, piecewise constant hazards, and discrete models. Parametric accelerated failure time models for left truncated and right censored data. Proportional hazards models for tabular and register data. Sampling of risk sets in Cox regression, selections in the Lexis diagram, bootstrapping. Broström (2022) <doi:10.1201/9780429503764>.
Infer the adjacency matrix of a network from time course data using an empirical Bayes estimation procedure based on Dynamic Bayesian Networks.
Interactive tools to explore topographic-like data sets. Such data sets take the form of a matrix in which the rows and columns provide location/frequency information, and the matrix elements contain altitude/response information. Such data is found in cartography, 2D spectroscopy and chemometrics. The functions in this package create interactive web pages showing the contoured data, possibly with slices from the original matrix parallel to each dimension. The interactive behavior is created using the D3.js JavaScript library by Mike Bostock.
An R interface to United States Environmental Protection Agency (EPA) Environmental Compliance History Online ('ECHO') Application Program Interface (API). ECHO provides information about EPA permitted facilities, discharges, and other reporting info associated with permitted entities. Data are obtained from <https://echo.epa.gov/>.
Provide estimation and data generation tools for new multivariate frailty models. This version includes the gamma, inverse Gaussian, weighted Lindley, Birnbaum-Saunders, truncated normal, mixture of inverse Gaussian, mixture of Birnbaum-Saunders, generalized exponential and Jorgensen-Seshadri-Whitmore as the distribution for frailty terms. For the basal model, it is considered a parametric approach based on the exponential, Weibull and the piecewise exponential distributions as well as a semiparametric approach. For details, see Gallardo et al. (2024) <doi:10.1007/s11222-024-10458-w>, Gallardo et al. (2025) <doi:10.1002/bimj.70044>, Kiprotich et al. (2025) <doi:10.1177/09622802251338984> and Gallardo et al. (2025) <doi:10.1038/s41598-025-15903-y>.
Addresses tasks along the pipeline from raw data to analysis and visualization for eye-tracking data. Offers several popular types of analyses, including linear and growth curve time analyses, onset-contingent reaction time analyses, as well as several non-parametric bootstrapping approaches. For references to the approach see Mirman, Dixon & Magnuson (2008) <doi:10.1016/j.jml.2007.11.006>, and Barr (2008) <doi:10.1016/j.jml.2007.09.002>.
Fits Leroux model in spectral domain to estimate causal spatial effect as detailed in Guan, Y; Page, G.L.; Reich, B.J.; Ventrucci, M.; Yang, S; (2020) <arXiv:2012.11767>. Both the parametric and semi-parametric models are available. The semi-parametric model relies on INLA'. The INLA package can be obtained from <https://www.r-inla.org/>.
Automated compound deconvolution, alignment across samples, and identification of metabolites by spectral library matching in Gas Chromatography - Mass spectrometry (GC-MS) untargeted metabolomics. Outputs a table with compound names, matching scores and the integrated area of the compound for each sample. Package implementation is described in Domingo-Almenara et al. (2016) <doi:10.1021/acs.analchem.6b02927>.
Constructing niche models and analyzing patterns of niche evolution. Acts as an interface for many popular modeling algorithms, and allows users to conduct Monte Carlo tests to address basic questions in evolutionary ecology and biogeography. Warren, D.L., R.E. Glor, and M. Turelli (2008) <doi:10.1111/j.1558-5646.2008.00482.x> Glor, R.E., and D.L. Warren (2011) <doi:10.1111/j.1558-5646.2010.01177.x> Warren, D.L., R.E. Glor, and M. Turelli (2010) <doi:10.1111/j.1600-0587.2009.06142.x> Cardillo, M., and D.L. Warren (2016) <doi:10.1111/geb.12455> D.L. Warren, L.J. Beaumont, R. Dinnage, and J.B. Baumgartner (2019) <doi:10.1111/ecog.03900>.
This package provides methods for analyzing R by C ecological contingency tables using the extreme case analysis, ecological regression, and Multinomial-Dirichlet ecological inference models. Also provides tools for manipulating higher-dimension data objects.
By overloading the R help() function, this package allows users to use "docstring" style comments within their own defined functions. The package also provides additional functions to mimic the R basic example() function and the prototyping of packages.
Exploring time series for signal detection. It is specifically designed to detect possible outbreaks using infectious disease surveillance data at the European Union / European Economic Area or country level. Automatic detection tools used are presented in the paper "Monitoring count time series in R: aberration detection in public health surveillance", by Salmon (2016) <doi:10.18637/jss.v070.i10>. The package includes: - Signal Detection tool, an interactive shiny application in which the user can import external data and perform basic signal detection analyses; - An automated report in HTML format, presenting the results of the time series analysis in tables and graphs. This report can also be stratified by population characteristics (see Population variable). This project was funded by the European Centre for Disease Prevention and Control.
This package provides a data package containing a database of epidemiological parameters. It stores the data for the epiparameter R package. Epidemiological parameter estimates are extracted from the literature.
This package provides the Empirical Bayesian Elastic Net for handling multicollinearity in generalized linear regression models. As a special case of the EBglmnet package (also available on CRAN), this package encourages a grouping effects to select relevant variables and estimate the corresponding non-zero effects.
This package implements three complementary pipelines for causal analysis on macroeconomic time series: (1) Error-Correction Models with Multivariate Adaptive Regression Splines (ECM-MARS), (2) Bayesian Structural Time Series (BSTS), and (3) Bayesian GLM with AR(1) errors validated with Leave-Future-Out (LFO). Heavy backends (Stan) are optional and never used in examples or tests.
Various recursive two-stage models to address the endogeneity issue of treatment variables in observational study or mediators in experiments. The details of the models are discussed in Peng (2023) <doi:10.1287/isre.2022.1113>.
Construct the admissible exact intervals for the binomial proportion, the Poisson mean and the total number of subjects with a certain attribute or the total number of the subjects for the hypergeometric distribution. Both one-sided and two-sided intervals are of interest. This package can be used to calculate the intervals constructed methods developed by Wang (2014) <doi:10.5705/ss.2012.257> and Wang (2015) <doi:10.1111/biom.12360>.
This package provides a variety of methods are provided to estimate and visualize distributional differences in terms of effect sizes. Particular emphasis is upon evaluating differences between two or more distributions across the entire scale, rather than at a single point (e.g., differences in means). For example, Probability-Probability (PP) plots display the difference between two or more distributions, matched by their empirical CDFs (see Ho and Reardon, 2012; <doi:10.3102/1076998611411918>), allowing for examinations of where on the scale distributional differences are largest or smallest. The area under the PP curve (AUC) is an effect-size metric, corresponding to the probability that a randomly selected observation from the x-axis distribution will have a higher value than a randomly selected observation from the y-axis distribution. Binned effect size plots are also available, in which the distributions are split into bins (set by the user) and separate effect sizes (Cohen's d) are produced for each bin - again providing a means to evaluate the consistency (or lack thereof) of the difference between two or more distributions at different points on the scale. Evaluation of empirical CDFs is also provided, with built-in arguments for providing annotations to help evaluate distributional differences at specific points (e.g., semi-transparent shading). All function take a consistent argument structure. Calculation of specific effect sizes is also possible. The following effect sizes are estimable: (a) Cohen's d, (b) Hedges g, (c) percentage above a cut, (d) transformed (normalized) percentage above a cut, (e) area under the PP curve, and (f) the V statistic (see Ho, 2009; <doi:10.3102/1076998609332755>), which essentially transforms the area under the curve to standard deviation units. By default, effect sizes are calculated for all possible pairwise comparisons, but a reference group (distribution) can be specified.