Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Calculate an optimal embedding of a set of data points into low-dimensional hyperbolic space. This uses the strain-minimizing hyperbolic embedding of Keller-Ressel and Nargang (2019), see <arXiv:1903.08977>.
This package contains miscellaneous functions useful for managing NetCDF files (see <https://en.wikipedia.org/wiki/NetCDF>), get moon phase and time for sun rise and fall, tide level, analyse and reconstruct periodic time series of temperature with irregular sinusoidal pattern, show scales and wind rose in plot with change of color of text, Metropolis-Hastings algorithm for Bayesian MCMC analysis, plot graphs or boxplot with error bars, search files in disk by there names or their content, read the contents of all files from a folder at one time.
This package provides an interface to HDFql <https://www.hdfql.com/> and helper functions for reading data from and writing data to HDF5 files. HDFql provides a high-level language for managing HDF5 data that is platform independent. For more information, see the reference manual <https://www.hdfql.com/resources/HDFqlReferenceManual.pdf>.
Builds on the EMD package to provide additional tools for empirical mode decomposition (EMD) and Hilbert spectral analysis. It also implements the ensemble empirical decomposition (EEMD) and the complete ensemble empirical mode decomposition (CEEMD) methods to avoid mode mixing and intermittency problems found in EMD analysis. The package comes with several plotting methods that can be used to view intrinsic mode functions, the HHT spectrum, and the Fourier spectrum.
Identifying labeled compounds in a 13C-tracer experiment in non-targeted fashion is a cumbersome process. This package facilitates such type of analyses by providing high level quality control plots, deconvoluting and evaluating spectra and performing a multitude of tests in an automatic fashion. The main idea is to use changing intensity ratios of ion pairs from peak list generated with xcms as candidates and evaluate those against base peak chromatograms and spectra information within the raw measurement data automatically. The functionality is described in Hoffmann et al. (2018) <doi:10.1021/acs.analchem.8b00356>.
An implementation of the modelling and reporting features described in reference textbook and guidelines (Briggs, Andrew, et al. Decision Modelling for Health Economic Evaluation. Oxford Univ. Press, 2011; Siebert, U. et al. State-Transition Modeling. Medical Decision Making 32, 690-700 (2012).): deterministic and probabilistic sensitivity analysis, heterogeneity analysis, time dependency on state-time and model-time (semi-Markov and non-homogeneous Markov models), etc.
Unsupervised multivariate filter feature selection using the UFS-rHCM or UFS-cHCM algorithms based on the heterogeneous correlation matrix (HCM). The HCM consists of Pearson's correlations between numerical features, polyserial correlations between numerical and ordinal features, and polychoric correlations between ordinal features. Tortora C., Madhvani S., Punzo A. (2025). "Designing unsupervised mixed-type feature selection techniques using the heterogeneous correlation matrix." International Statistical Review <doi:10.1111/insr.70016>. This work was supported by the National Science foundation NSF Grant N 2209974 (Tortora) and by the Italian Ministry of University and Research (MUR) under the PRIN 2022 grant number 2022XRHT8R (CUP: E53D23005950006), as part of â The SMILE Project: Statistical Modelling and Inference to Live the Environmentâ , funded by the European Union â Next Generation EU (Punzo).
Kernel density estimation with hexagonal grid for bivariate data. Hexagonal grid has many beneficial properties like equidistant neighbours and less edge bias, making it better for spatial analyses than the more commonly used rectangular grid. Carr, D. B. et al. (1987) <doi:10.2307/2289444>. Diggle, P. J. (2010) <doi:10.1201/9781420072884>. Hill, B. (2017) <https://blog.bruce-hill.com/meandering-triangles>. Jones, M. C. (1993) <doi:10.1007/BF00147776>.
An implementation for high-dimensional time series analysis methods, including factor model for vector time series proposed by Lam and Yao (2012) <doi:10.1214/12-AOS970> and Chang, Guo and Yao (2015) <doi:10.1016/j.jeconom.2015.03.024>, martingale difference test proposed by Chang, Jiang and Shao (2023) <doi:10.1016/j.jeconom.2022.09.001>, principal component analysis for vector time series proposed by Chang, Guo and Yao (2018) <doi:10.1214/17-AOS1613>, cointegration analysis proposed by Zhang, Robinson and Yao (2019) <doi:10.1080/01621459.2018.1458620>, unit root test proposed by Chang, Cheng and Yao (2022) <doi:10.1093/biomet/asab034>, white noise test proposed by Chang, Yao and Zhou (2017) <doi:10.1093/biomet/asw066>, CP-decomposition for matrix time series proposed by Chang et al. (2023) <doi:10.1093/jrsssb/qkac011> and Chang et al. (2024) <doi:10.48550/arXiv.2410.05634>, and statistical inference for spectral density matrix proposed by Chang et al. (2022) <doi:10.48550/arXiv.2212.13686>.
Quantifying similarity between high-dimensional single cell samples is challenging, and usually requires some simplifying hypothesis to be made. By transforming the high dimensional space into a high dimensional grid, the number of cells in each sub-space of the grid is characteristic of a given sample. Using a Hilbert curve each sample can be visualized as a simple density plot, and the distance between samples can be calculated from the distribution of cells using the Jensen-Shannon distance. Bins that correspond to significant differences between samples can identified using a simple bootstrap procedure.
Comfortable ways to work with hyperspectral data sets. I.e. spatially or time-resolved spectra, or spectra with any other kind of information associated with each of the spectra. The spectra can be data as obtained in XRF, UV/VIS, Fluorescence, AES, NIR, IR, Raman, NMR, MS, etc. More generally, any data that is recorded over a discretized variable, e.g. absorbance = f(wavelength), stored as a vector of absorbance values for discrete wavelengths is suitable.
This package contains functions to construct high-dimensional orthogonal maximin distance designs in two, four, eight, and sixteen levels from rotating the Kronecker product of sub-Hadamard matrices.
The theoretical covariance between pairs of markers is calculated from either paternal haplotypes and maternal linkage disequilibrium (LD) or vise versa. A genetic map is required. Grouping of markers is based on the correlation matrix and a representative marker is suggested for each group. Employing the correlation matrix, optimal sample size can be derived for association studies based on a SNP-BLUP approach. The implementation relies on paternal half-sib families and biallelic markers. If maternal half-sib families are used, the roles of sire/dam are swapped. Multiple families can be considered. Wittenburg, Bonk, Doschoris, Reyer (2020) "Design of Experiments for Fine-Mapping Quantitative Trait Loci in Livestock Populations" <doi:10.1186/s12863-020-00871-1>. Carlson, Eberle, Rieder, Yi, Kruglyak, Nickerson (2004) "Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium" <doi:10.1086/381000>.
The goal of this package is to user-friendly realizing Gaussian graphical model-based heterogeneity analysis. Recently, several Gaussian graphical model-based heterogeneity analysis techniques have been developed. A common methodological limitation is that the number of subgroups is assumed to be known a priori, which is not realistic. In a very recent study (Ren et al., 2022), a novel approach based on the penalized fusion technique is developed to fully data-dependently determine the number and structure of subgroups in Gaussian graphical model-based heterogeneity analysis. It opens the door for utilizing the Gaussian graphical model technique in more practical settings. Beyond Ren et al. (2022), more estimations and functions are added, so that the package is self-contained and more comprehensive and can provide ``more direct insights to practitioners (with the visualization function). Reference: Ren, M., Zhang S., Zhang Q. and Ma S. (2022). Gaussian Graphical Model-based Heterogeneity Analysis via Penalized Fusion. Biometrics, 78 (2), 524-535.
This package provides a protocol that facilitates the processing and analysis of Hydrogen-Deuterium Exchange Mass Spectrometry data using p-value statistics and Critical Interval analysis. It provides a pipeline for analyzing data from HDXExaminer (Sierra Analytics, Trajan Scientific), automating matching and comparison of protein states through Welch's T-test and the Critical Interval statistical framework. Additionally, it simplifies data export, generates PyMol scripts, and ensures calculations meet publication standards. HDXBoxeR assists in various aspects of hydrogen-deuterium exchange data analysis, including reprocessing data, calculating parameters, identifying significant peptides, generating plots, and facilitating comparison between protein states. For details check papers by Hageman and Weis (2019) <doi:10.1021/acs.analchem.9b01325> and Masson et al. (2019) <doi:10.1038/s41592-019-0459-y>. HDXBoxeR citation: Janowska et al. (2024) <doi:10.1093/bioinformatics/btae479>.
Supplement for the book "Handbook of Regression Methods" by D. S. Young. Some datasets used in the book are included and documented. Wrapper functions are included that simplify the examples in the textbook, such as code for constructing a regressogram and expanding ANOVA tables to reflect the total sum of squares.
This package provides a data set of the Portuguese NHS hospitals.
Calculate expected relative risk and proportion protected assuming normally distributed log10 transformed antibody dose for a several component vaccine. Uses Hill models for each component which are combined under Bliss independence. See Saul and Fay, 2007 <DOI:10.1371/journal.pone.0000850>.
Statistical analysis of static chamber concentration data for trace gas flux estimation.
Set of tools to help interested researchers to build hospital networks from data on hospitalized patients transferred between hospitals. Methods provided have been used in Donker T, Wallinga J, Grundmann H. (2010) <doi:10.1371/journal.pcbi.1000715>, and Nekkab N, Crépey P, Astagneau P, Opatowski L, Temime L. (2020) <doi:10.1038/s41598-020-71212-6>.
This package implements an efficient algorithm for fitting the entire regularization path of quantile regression models with elastic-net penalties using a generalized coordinate descent scheme. The framework also supports SCAD and MCP penalties. It is designed for high-dimensional datasets and emphasizes numerical accuracy and computational efficiency. This package implements the algorithms proposed in Tang, Q., Zhang, Y., & Wang, B. (2022) <https://openreview.net/pdf?id=RvwMTDYTOb>.
Implementation of MCMC algorithms to estimate the Hierarchical Dirichlet Process Generalized Linear Model (hdpGLM) presented in the paper Ferrari (2020) Modeling Context-Dependent Latent Heterogeneity, Political Analysis <DOI:10.1017/pan.2019.13> and <doi:10.18637/jss.v107.i10>.
Generates (half-)normal plots with simulation envelopes using different diagnostics from a range of different fitted models. A few example datasets are included.
Efficient Bayesian multinomial logistic regression based on heavy-tailed (hyper-LASSO, non-convex) priors. The posterior of coefficients and hyper-parameters is sampled with restricted Gibbs sampling for leveraging the high-dimensionality and Hamiltonian Monte Carlo for handling the high-correlation among coefficients. A detailed description of the method: Li and Yao (2018), Journal of Statistical Computation and Simulation, 88:14, 2827-2851, <doi:10.48550/arXiv.1405.3319>.