Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
"Methylation-Aware Genotype Association in R" (MAGAR) computes methQTL from DNA methylation and genotyping data from matched samples. MAGAR uses a linear modeling stragety to call CpGs/SNPs that are methQTLs. MAGAR accounts for the local correlation structure of CpGs.
Multi-omic Pathway Analysis of Cells (MPAC), integrates multi-omic data for understanding cellular mechanisms. It predicts novel patient groups with distinct pathway profiles as well as identifying key pathway proteins with potential clinical associations. From CNA and RNA-seq data, it determines genes’ DNA and RNA states (i.e., repressed, normal, or activated), which serve as the input for PARADIGM to calculate Inferred Pathway Levels (IPLs). It also permutes DNA and RNA states to create a background distribution to filter IPLs as a way to remove events observed by chance. It provides multiple methods for downstream analysis and visualization.
Codelink Mouse Inflammation 16 Bioarray annotation data (chip mi16cod) assembled using data from public repositories.
The MicrobiomeExplorer R package is designed to facilitate the analysis and visualization of marker-gene survey feature data. It allows a user to perform and visualize typical microbiome analytical workflows either through the command line or an interactive Shiny application included with the package. In addition to applying common analytical workflows the application enables automated analysis report generation.
Affymetrix mogene10 annotation data (chip mogene10sttranscriptcluster) assembled using data from public repositories.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Medicago\_probe\_tab.
This package provides a package containing an environment representing the Mu19KsubB.CDF file.
Affymetrix mogene20 annotation data (chip mogene20sttranscriptcluster) assembled using data from public repositories.
Affymetrix moex10 annotation data (chip moex10stprobeset) assembled using data from public repositories.
Subsampled Hi-C in HEK cells expressing the NHA9 fusion with an F to S mutated IDR ("FS") or without any mutations to the IDR ("Wildtype" or "WT"). These files are used for testing mariner functions and some examples.
mitch is an R package for multi-contrast enrichment analysis. At it’s heart, it uses a rank-MANOVA based statistical approach to detect sets of genes that exhibit enrichment in the multidimensional space as compared to the background. The rank-MANOVA concept dates to work by Cox and Mann (https://doi.org/10.1186/1471-2105-13-S16-S12). mitch is useful for pathway analysis of profiling studies with one, two or more contrasts, or in studies with multiple omics profiling, for example proteomic, transcriptomic, epigenomic analysis of the same samples. mitch is perfectly suited for pathway level differential analysis of scRNA-seq data. We have an established routine for pathway enrichment of Infinium Methylation Array data (see vignette). The main strengths of mitch are that it can import datasets easily from many upstream tools and has advanced plotting features to visualise these enrichments.
Agilent annotation data (chip mgug4120a) assembled using data from public repositories.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Mu11KsubA\_probe\_tab.
Example CDF data for the metaMS package.
Save MultiAssayExperiments to h5mu files supported by muon and mudata. Muon is a Python framework for multimodal omics data analysis. It uses an HDF5-based format for data storage.
This package provides tools for detecting drug-protein interactions and estimating IC50 values from chemoproteomics data. Implements semi-parametric isotonic regression, bootstrapping, and curve fitting to evaluate compound effects on protein abundance.
This package provides a package containing an environment representing the MG_U74Av2.CDF file.
The probabilities by one-sided NOISeq are combined by Fisher's method or Stouffer's method.
Clustering is carried out to identify patterns in transcriptomics profiles to determine clinically relevant subgroups of patients. Feature (gene) selection is a critical and an integral part of the process. Currently, there are many feature selection and clustering methods to identify the relevant genes and perform clustering of samples. However, choosing an appropriate methodology is difficult. In addition, extensive feature selection methods have not been supported by the available packages. Hence, we developed an integrative R-package called multiClust that allows researchers to experiment with the choice of combination of methods for gene selection and clustering with ease. Using multiClust, we identified the best performing clustering methodology in the context of clinical outcome. Our observations demonstrate that simple methods such as variance-based ranking perform well on the majority of data sets, provided that the appropriate number of genes is selected. However, different gene ranking and selection methods remain relevant as no methodology works for all studies.
This package provides a package containing an environment representing the Medicago.cdf file.
The package provides statistical tools for detecting differentially abundant proteins in shotgun mass spectrometry-based proteomic experiments with tandem mass tag (TMT) labeling. It provides multiple functionalities, including aata visualization, protein quantification and normalization, and statistical modeling and inference. Furthermore, it is inter-operable with other data processing tools, such as Proteome Discoverer, MaxQuant, OpenMS and SpectroMine.
Store minor allele frequency data from the Exome Aggregation Consortium (ExAC release 1.0) for the human genome version hs37d5.
Data package containing a collection of multi-sample multi-group scRNA-seq datasets in SingleCellExperiment Bioconductor object format.
magrene allows the identification and analysis of graph motifs in (duplicated) gene regulatory networks (GRNs), including lambda, V, PPI V, delta, and bifan motifs. GRNs can be tested for motif enrichment by comparing motif frequencies to a null distribution generated from degree-preserving simulated GRNs. Motif frequencies can be analyzed in the context of gene duplications to explore the impact of small-scale and whole-genome duplications on gene regulatory networks. Finally, users can calculate interaction similarity for gene pairs based on the Sorensen-Dice similarity index.