Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computes the expectation of the number of transmissions and receptions considering a Hop-by-Hop transport model with limited number of retransmissions per packet. It provides the theoretical results shown in Palma et. al.(2016) <DOI:10.1109/TLA.2016.7555237> and also estimated values based on Monte Carlo simulations. It is also possible to consider random data and ACK probabilities.
Code Syntax Highlighting made easy for code snippets or complete files. Whether you're documenting your data analysis or creating interactive shiny apps.
This package provides flexible maximum likelihood estimation and inference for Hidden Markov Models (HMMs) and Hidden Semi-Markov Models (HSMMs), as well as the underlying systems in which they operate. The package supports a wide range of observation and dwell-time distributions, offering a flexible modelling framework suitable for diverse practical data. Efficient implementations of the forward-backward and Viterbi algorithms are provided via Rcpp for enhanced computational performance. Additional functionality includes model simulation, residual analysis, non-initialised estimation, local and global decoding, calculation of diverse information criteria, computation of confidence intervals using parametric bootstrap methods, numerical covariance matrix estimation, and comprehensive visualisation functions for interpreting the data-generating processes inferred from the models. Methods follow standard approaches described by Guédon (2003) <doi:10.1198/1061860032030>, Zucchini and MacDonald (2009, ISBN:9781584885733), and O'Connell and Højsgaard (2011) <doi:10.18637/jss.v039.i04>.
Based on the aggregated shares retained by individual firms or actors within a market or space, the Herfindahl-Hirschman Index (HHI) measures the level of concentration in a space. This package allows for intuitive and straightforward computation of HHI scores, requiring placement of objects of interest directly into the function. The package also includes a plot function for quick visual display of an HHI time series using any measure of time (year, quarter, month, etc.). For usage, please cite the Journal of Open Source Software paper associated with the package: Waggoner, Philip D. (2018) <doi:10.21105/joss.00828>.
Given one or multiple paths to files produced by a PULSE multi-channel or a PULSE one-channel system (<https://electricblue.eu/pulse>) from a single experiment: [1] check pulse files for inconsistencies and read/merge all data, [2] split across time windows, [3] interpolate and smooth to optimize the dataset, [4] compute the heart rate frequency for each channel/window, and [5] facilitate quality control, summarising and plotting. Heart rate frequency is calculated using the Automatic Multi-scale Peak Detection algorithm proposed by Felix Scholkmann and team. For more details see Scholkmann et al (2012) <doi:10.3390/a5040588>. Check original code at <https://github.com/ig248/pyampd>. ElectricBlue is a non-profit technology transfer startup creating research-oriented solutions for the scientific community (<https://electricblue.eu>).
This is a collection of functions for converting coordinates between WGS84UTM, WGS84GEO, HK80UTM, HK80GEO and HK1980GRID Coordinate Systems used in Hong Kong SAR, based on the algorithms described in Explanatory Notes on Geodetic Datums in Hong Kong by Survey and Mapping Office Lands Department, Hong Kong Government (1995).
Evaluates the hypergeometric functions of a matrix argument, which appear in random matrix theory. This is an implementation of Koev & Edelman's algorithm (2006) <doi:10.1090/S0025-5718-06-01824-2>.
This package provides methods for data engineering in the human resources (HR) corporate domain. Designed for HR analytics practitioners and workforce-oriented data sets.
Implementation of S4 class of sets and multisets of numbers. The implementation is based on the hash table from the package hash'. Quick operations are allowed when the set is a dynamic object. The implementation is discussed in detail in Ceoldo and Wit (2023) <arXiv:2304.09809>.
Provide functions to make estimate the number of states for a hidden Markov model (HMM) using marginal likelihood method proposed by the authors. See the Manual.pdf file a detail description of all functions, and a detail tutorial.
This package provides tools for the estimation of Heckman selection models with robust variance-covariance matrices. It includes functions for computing the bread and meat matrices, as well as clustered standard errors for generalized Heckman models, see Fernando de Souza Bastos and Wagner Barreto-Souza and Marc G. Genton (2022, ISSN: <https://www.jstor.org/stable/27164235>). The package also offers cluster-robust inference with sandwich estimators, and tools for handling issues related to eigenvalues in covariance matrices.
Several functions that allow by different methods to infer a piecewise polynomial regression model under regularity constraints, namely continuity or differentiability of the link function. The implemented functions are either specific to data with two regimes, or generic for any number of regimes, which can be given by the user or learned by the algorithm. A paper describing all these methods will be submitted soon. The reference will be added to this file as soon as available.
Constructs shrinkage estimators of high-dimensional mean-variance portfolios and performs high-dimensional tests on optimality of a given portfolio. The techniques developed in Bodnar et al. (2018 <doi:10.1016/j.ejor.2017.09.028>, 2019 <doi:10.1109/TSP.2019.2929964>, 2020 <doi:10.1109/TSP.2020.3037369>, 2021 <doi:10.1080/07350015.2021.2004897>) are central to the package. They provide simple and feasible estimators and tests for optimal portfolio weights, which are applicable for large p and large n situations where p is the portfolio dimension (number of stocks) and n is the sample size. The package also includes tools for constructing portfolios based on shrinkage estimators of the mean vector and covariance matrix as well as a new Bayesian estimator for the Markowitz efficient frontier recently developed by Bauder et al. (2021) <doi:10.1080/14697688.2020.1748214>.
These sample data sets are intended for historians learning R. They include population, institutional, religious, military, and prosopographical data suitable for mapping, quantitative analysis, and network analysis.
This package implements the method developed by Cao and Kosorok (2011) for the significance analysis of thousands of features in high-dimensional biological studies. It is an asymptotically valid data-driven procedure to find critical values for rejection regions controlling the k-familywise error rate, false discovery rate, and the tail probability of false discovery proportion.
This package provides tools for emitting the Problem Details structure defined in RFC 7807 <https://tools.ietf.org/html/rfc7807> for reporting errors from HTTP servers in a standard way.
Estimates parameters in Mixture Transition Distribution (MTD) models, a class of high-order Markov chains. The set of relevant pasts (lags) is selected using either the Bayesian Information Criterion or the Forward Stepwise and Cut algorithms. Other model parameters (e.g. transition probabilities and oscillations) can be estimated via maximum likelihood estimation or the Expectation-Maximization algorithm. Additionally, hdMTD includes a perfect sampling algorithm that generates samples of an MTD model from its invariant distribution. For theory, see Ost & Takahashi (2023) <http://jmlr.org/papers/v24/22-0266.html>.
This package provides a method for estimating the correlation matrix of the Gaussian copula from the observed data. This package also contains a penalized estimation of the corresponding precision matrix, and enables to generate random vectors that are distributed according to a Gaussian copula.
This package provides a multi-core R package that allows for the statistical modeling of multi-group multivariate mixed data using Gaussian graphical models. Combining the Gaussian copula framework with the fused graphical lasso penalty, the heteromixgm package can handle a wide variety of datasets found in various sciences. The package also includes an option to perform model selection using the AIC, BIC and EBIC information criteria, a function that plots partial correlation graphs based on the selected precision matrices, as well as simulate mixed heterogeneous data for exploratory or simulation purposes and one multi-group multivariate mixed agricultural dataset pertaining to maize yields. The package implements the methodological developments found in Hermes et al. (2024) <doi:10.1080/10618600.2023.2289545>.
HTTP Request protocols. Implements the GET, POST and multipart POST request.
This package performs multiple hot-deck imputation of categorical and continuous variables in a data frame.
This package provides a comprehensive R package for accessing and working with publicly available and free resources from the Agency for Healthcare Research and Quality (AHRQ) Healthcare Cost and Utilization Project (HCUP). The package provides streamlined access to HCUP's Clinical Classifications Software Refined (CCSR) mapping files and Summary Trend Tables, enabling researchers and analysts to efficiently map ICD-10-CM diagnosis codes and ICD-10-PCS procedure codes to CCSR categories and access HCUP statistical reports. Key features include: direct download from HCUP website, multiple output formats (long/wide/default), cross-classification support, version management, citation generation, and intelligent caching. The package does not redistribute HCUP data files but facilitates direct download from the official HCUP website, ensuring users always have access to the latest versions and maintain compliance with HCUP data use policies. This package only accesses free public tools and reports; it does NOT access HCUP databases (NIS, KID, SID, NEDS, etc.) that require purchase. For more information, see <https://hcup-us.ahrq.gov/>.
This package provides access to Uber's H3 library for geospatial indexing via its JavaScript transpile h3-js <https://github.com/uber/h3-js> and V8 <https://github.com/jeroen/v8>.
Wrapper for Stan that offers a number of in-built models to implement a hierarchical Bayesian longitudinal model for repeat observation data. Model choice selects the differential equation that is fit to the observations. Single and multi-individual models are available. O'Brien et al. (2024) <doi:10.1111/2041-210X.14463>.