Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Collection of conversion, analytical, geodesic, mapping, and plotting functions. Used to support packages and code written by researchers at the Southwest Fisheries Science Center of the National Oceanic and Atmospheric Administration.
Normalization based a subset of negative control probes as described in Subset quantile normalization using negative control features'. Wu Z, Aryee MJ, J Comput Biol. 2010 Oct;17(10):1385-95 [PMID 20976876].
Fetch data on targeted public investments from Plataforma +Brasil (SICONV) <http://plataformamaisbrasil.gov.br/>, the responsible system for requests, execution, and monitoring of federal discretionary transfers in Brazil.
This package provides datasets from Vigen (2015) <https://web.archive.org/web/20230607181247/https%3A/tylervigen.com/spurious-correlations> rescued from the Internet Wayback Machine. These should be preserved for statistics introductory courses as these make it very clear that correlation is not causation.
This package performs estimation and testing of the treatment effect in a 2-group randomized clinical trial with a quantitative, dichotomous, or right-censored time-to-event endpoint. The method improves efficiency by leveraging baseline predictors of the endpoint. The inverse probability weighting technique of Robins, Rotnitzky, and Zhao (JASA, 1994) is used to provide unbiased estimation when the endpoint is missing at random.
Reliability of (normal) stress-strength models and for building two-sided or one-sided confidence intervals according to different approximate procedures.
This package contains various functions to be used for simulation education, including simple Monte Carlo simulation functions, queueing simulation functions, variate generation functions capable of producing independent streams and antithetic variates, functions for illustrating random variate generation for various discrete and continuous distributions, and functions to compute time-persistent statistics. Also contains functions for visualizing: event-driven details of a single-server queue model; a Lehmer random number generator; variate generation via acceptance-rejection; and of generating a non-homogeneous Poisson process via thinning. Also contains two queueing data sets (one fabricated, one real-world) to facilitate input modeling. More details on the use of these functions can be found in Lawson and Leemis (2015) <doi:10.1109/WSC.2017.8248124>, in Kudlay, Lawson, and Leemis (2020) <doi:10.1109/WSC48552.2020.9384010>, and in Lawson and Leemis (2021) <doi:10.1109/WSC52266.2021.9715299>.
This package provides tools for calculating solar geometry, solar radiation on horizontal and inclined planes, and simulating the performance of various photovoltaic (PV) systems. Supports daily and intradaily irradiation data, enabling detailed analysis of grid-connected and water-pumping PV systems, including shading effects and solar angle calculations.
This package provides a list of methods for estimating a smooth tensor with an unknown permutation. It also contains several multi-variate functions for generating permuted signal tensors and corresponding observed tensors. For a detailed introduction for the model and estimation techniques, see the paper by Chanwoo Lee and Miaoyan Wang (2021) "Smooth tensor estimation with unknown permutations" <arXiv:2111.04681>.
This package provides functions to retrieve the location of R scripts loaded through the source() function or run from the command line using the Rscript command. This functionality is analogous to the Bash shell's $BASH_SOURCE[0]. Users can first set the project root's path relative to the script path and then all subsequent paths relative to the root. This system ensures that all paths lead to the same location regardless of where any script is executed/loaded from without resorting to the use of setwd() at the top of the scripts.
Using any importation code designed for SAS users to read ASCII files into sas7bdat files, this package parses through the INPUT block of a .sas syntax file to design the parameters needed for a read.fwf() function call. This allows the user to specify the location of the ASCII (often a .dat') file and the location of the SAS syntax file, and then load the data frame directly into R in just one step.
Model Selection Based on Combined Penalties. This package implements a stepwise forward variable selection algorithm based on a penalized likelihood criterion that combines the L0 with L2 or L1 norms.
Introduces a fast and efficient Surrogate Variable Analysis algorithm that captures variation of unknown sources (batch effects) for high-dimensional data sets. The algorithm is built on the irwsva.build function of the sva package and proposes a revision on it that achieves an order of magnitude faster running time while trading no accuracy loss in return.
This package provides nonparametric Steinian shrinkage estimators of the covariance matrix that are suitable in high dimensional settings, that is when the number of variables is larger than the sample size.
R bindings to SVD and eigensolvers (PROPACK, nuTRLan).
This package provides functions for performing common tasks when working with slippy map tile service APIs e.g. Google maps, Open Street Map, Mapbox, Stamen, among others. Functionality includes converting from latitude and longitude to tile numbers, determining tile bounding boxes, and compositing tiles to a georeferenced raster image.
An open-source R package for structuring, maintaining, running, and debugging statistical simulations on both local and cluster-based computing environments.See full documentation at <https://avi-kenny.github.io/SimEngine/>.
This package provides functions for evaluating tournament predictions, simulating results from individual soccer matches and tournaments. See <http://sandsynligvis.dk/2018/08/03/world-cup-prediction-winners/> for more information.
Simulates the cultural evolution of quantitative traits of bird song. SongEvo is an individual- (agent-) based model. SongEvo is spatially-explicit and can be parameterized with, and tested against, measured song data. Functions are available for model implementation, sensitivity analyses, parameter optimization, model validation, and hypothesis testing.
Assesses the number of concurrent users shiny applications are capable of supporting, and for directing application changes in order to support a higher number of users. Provides facilities for recording shiny application sessions, playing recorded sessions against a target server at load, and analyzing the resulting metrics.
Detection of item-wise Differential Item Functioning (DIF) in fitted mirt', multipleGroup or bfactor models using score-based structural change tests. Under the hood the sctest() function from the strucchange package is used.
These are tools that allow users to do time series diagnostics, primarily tests of unit root, by way of simulation. While there is nothing necessarily wrong with the received wisdom of critical values generated decades ago, simulation provides its own perks. Not only is simulation broadly informative as to what these various test statistics do and what are their plausible values, simulation provides more flexibility for assessing unit root by way of different thresholds or different hypothesized distributions.
This package provides a statistical disclosure control tool to protect frequency tables in cases where small values are sensitive. The function PLSrounding() performs small count rounding of necessary inner cells so that all small frequencies of cross-classifications to be published (publishable cells) are rounded. This is equivalent to changing micro data since frequencies of unique combinations are changed. Thus, additivity and consistency are guaranteed. The methodology is described in Langsrud and Heldal (2018) <https://www.researchgate.net/publication/327768398_An_Algorithm_for_Small_Count_Rounding_of_Tabular_Data>.
Acquire hourly meteorological data from stations located all over the world. There is a wealth of data available, with historic weather data accessible from nearly 30,000 stations. The available data is automatically downloaded from a data repository and processed into a tibble for the exact range of years requested. A relative humidity approximation is provided using the August-Roche-Magnus formula, which was adapted from Alduchov and Eskridge (1996) <doi:10.1175%2F1520-0450%281996%29035%3C0601%3AIMFAOS%3E2.0.CO%3B2>.