Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a simple XML tree parser/generator. It includes functions to read XML files into R objects, get information out of and into nodes, and write R objects back to XML code. It's not as powerful as the XML package and doesn't aim to be, but for simple XML handling it could be useful. It was originally developed for the R GUI and IDE RKWard <https://rkward.kde.org>, to make plugin development easier.
Download data from individual XKCD comics, written by Randall Munroe <https://xkcd.com/>.
This package provides a set of functions devoted to multivariate exploratory statistics on textual data. Classical methods such as correspondence analysis and agglomerative hierarchical clustering are available. Chronologically constrained agglomerative hierarchical clustering enriched with labelled-by-words trees is offered. Given a division of the corpus into parts, their characteristic words and documents are identified. Further, accessing to FactoMineR functions is very easy. Two of them are relevant in textual domain. MFA() addresses multiple lexical table allowing applications such as dealing with multilingual corpora as well as simultaneously analyzing both open-ended and closed questions in surveys. See <http://xplortext.unileon.es> for examples.
This package provides a Python interface structured according to the general form described in package XR and in the book "Extending R".
Representation-dependent gene-level operations for genetic and evolutionary algorithms with real-coded genes are collected in this package. The common feature of the gene operations is that all of them are useful for derivation-free optimization algorithms. At the moment the package implements initialization, mutation, crossover, and replication operations for differential evolution as described in Price, Kenneth V., Storn, Rainer M. and Lampinen, Jouni A. (2005) <doi:10.1007/3-540-31306-0>. In addition, several (more recent) methods for determining the scale factor are provided.
Analysis of crossover interference in experimental crosses, particularly regarding the gamma model. See, for example, Broman and Weber (2000) <doi:10.1086/302923>.
Supports a structured approach for exploring PKPD data <https://opensource.nibr.com/xgx/>. It also contains helper functions for enabling the modeler to follow best R practices (by appending the program name, figure name location, and draft status to each plot). In addition, it enables the modeler to follow best graphical practices (by providing a theme that reduces chart ink, and by providing time-scale, log-scale, and reverse-log-transform-scale functions for more readable axes). Finally, it provides some data checking and summarizing functions for rapidly exploring pharmacokinetics and pharmacodynamics (PKPD) datasets.
This collection of gene representation-independent functions implements the population layer of extended evolutionary and genetic algorithms and its support. The population layer consists of functions for initializing, logging, observing, evaluating a population of genes, as well as of computing the next population. For parallel evaluation of a population of genes 4 execution models - named Sequential, MultiCore, FutureApply, and Cluster - are provided. They are implemented by configuring the lapply() function. The execution model FutureApply can be externally configured as recommended by Bengtsson (2021) <doi:10.32614/RJ-2021-048>. Configurable acceptance rules and cooling schedules (see Kirkpatrick, S., Gelatt, C. D. J, and Vecchi, M. P. (1983) <doi:10.1126/science.220.4598.671>, and Aarts, E., and Korst, J. (1989, ISBN:0-471-92146-7) offer simulated annealing or greedy randomized approximate search procedure elements. Adaptive crossover and mutation rates depending on population statistics generalize the approach of Stanhope, S. A. and Daida, J. M. (1996, ISBN:0-18-201-031-7). For xega's architecture, see Geyer-Schulz, A. (2025) <doi:10.5445/IR/1000187255>.
An implementation of the representation-dependent gene level operations of grammar-based genetic programming with genes which are derivation trees of a context-free grammar: Initialization of a gene with a complete random derivation tree, decoding of a derivation tree. Crossover is implemented by exchanging subtrees. Depth-bounds for the minimal and the maximal depth of the roots of the subtrees exchanged by crossover can be set. Mutation is implemented by replacing a subtree by a random subtree. The depth of the random subtree and the insertion node are configurable. For details, see Geyer-Schulz (1997, ISBN:978-3-7908-0830-X).
Helps systematize and ease the process of building unit tests with the testthat package by providing tools for generating expectations.
This package provides tools to analyze sex differences in omics data for complex diseases. It includes functions for differential expression analysis using the limma method <doi:10.1093/nar/gkv007>, interaction testing between sex and disease, pathway enrichment with clusterProfiler <doi:10.1089/omi.2011.0118>, and gene regulatory network (GRN) construction and analysis using igraph'. The package enables a reproducible workflow from raw data processing to biological interpretation.
This package provides support for transformations of numeric aggregates between statistical classifications (e.g. occupation or industry categorisations) using the Crossmaps framework. Implements classes for representing transformations between a source and target classification as graph structures, and methods for validating and applying crossmaps to transform data collected under the source classification into data indexed using the target classification codes. Documentation about the Crossmaps framework is provided in the included vignettes and in Huang (2024, <doi:10.48550/arXiv.2406.14163>).
Compute surrogate explanation groves for predictive machine learning models and analyze complexity vs. explanatory power of an explanation according to Szepannek, G. and von Holt, B. (2023) <doi:10.1007/s41237-023-00205-2>.
Create HTML5 slides with R Markdown and the JavaScript library remark.js (<https://remarkjs.com>).
This is a set of statistical quality control functions, that allows plotting control charts and its iterations, process capability for variable and attribute control, highlighting the xrs_gr() function, like a first iteration for variable chart, meanwhile the we_rules() function detects non random patterns in sample.
The xlsxjars package collects all the external jars required for the xlxs package. This release corresponds to POI 3.13.
This package provides a high-level interface for creating and exporting summary tables to Excel'. Built on dplyr and openxlsx', it provides tools for generating one-way to n-way tables, and summarizing multiple response questions and question blocks. Tables are exported with native Excel formatting, including titles, footnotes, and basic styling options.
This package provides functions for Estimating a (c)DCC-GARCH Model in large dimensions based on a publication by Engle et,al (2017) <doi:10.1080/07350015.2017.1345683> and Nakagawa et,al (2018) <doi:10.3390/ijfs6020052>. This estimation method is consist of composite likelihood method by Pakel et al. (2014) <http://paneldataconference2015.ceu.hu/Program/Cavit-Pakel.pdf> and (Non-)linear shrinkage estimation of covariance matrices by Ledoit and Wolf (2004,2015,2016). (<doi:10.1016/S0047-259X(03)00096-4>, <doi:10.1214/12-AOS989>, <doi:10.1016/j.jmva.2015.04.006>).
The circadian period of a time series data is predicted and the statistical significance of the periodicity are calculated using the chi-square periodogram.
This package provides tools to analyze datasets previous to any statistical modeling. Has various functions designed to find inconsistencies and understanding the distribution of the data.
Read and write XES Files to create event log objects used by the bupaR framework. XES (Extensible Event Stream) is the `IEEE` standard for storing and sharing event data (see <http://standards.ieee.org/findstds/standard/1849-2016.html> for more info).
Allows to provide live interpretations and explanations of statistical functions in R. These interpretations and explanations are shown when the explained function is called by the user. They can interact with the values of the explained function's actual results to offer relevant, meaningful insights. The xplain interpretations and explanations are based on an easy-to-use XML format that allows to include R code to interact with the returns of the explained function.
This tool enables in-database scoring of XGBoost models built in R, by translating trained model objects into SQL query. XGBoost <https://github.com/dmlc/xgboost> provides parallel tree boosting (also known as gradient boosting machine, or GBM) algorithms in a highly efficient, flexible and portable way. GBM algorithm is introduced by Friedman (2001) <doi:10.1214/aos/1013203451>, and more details on XGBoost can be found in Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>.
The xtdml package implements partially linear panel regression (PLPR) models with high-dimensional confounding variables and an exogenous treatment variable within the double machine learning framework. The package is used to estimate the structural parameter (treatment effect) in static panel data models with fixed effects using the approaches established in Clarke and Polselli (2025) <doi:10.1093/ectj/utaf011>. xtdml is built on the object-oriented package DoubleML (Bach et al., 2024) <doi:10.18637/jss.v108.i03> using the mlr3 ecosystem.