Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Hamiltonian Monte Carlo for both continuous and discontinuous posterior distributions with a customizable trajectory length termination criterion. See Nishimura et al. (2020) <doi:10.1093/biomet/asz083> for the original Discontinuous Hamiltonian Monte Carlo; Hoffman et al. (2014) <doi:10.48550/arXiv.1111.4246> and Betancourt (2016) <doi:10.48550/arXiv.1601.00225> for the definition of possible Hamiltonian Monte Carlo termination criteria.
This package provides tools for interactive data exploration built using shiny'. Includes apps for descriptive statistics, visualizing probability distributions, inferential statistics, linear regression, logistic regression and RFM analysis.
Representation-dependent gene-level operations for genetic and evolutionary algorithms with real-coded genes are collected in this package. The common feature of the gene operations is that all of them are useful for derivation-free optimization algorithms. At the moment the package implements initialization, mutation, crossover, and replication operations for differential evolution as described in Price, Kenneth V., Storn, Rainer M. and Lampinen, Jouni A. (2005) <doi:10.1007/3-540-31306-0>. In addition, several (more recent) methods for determining the scale factor are provided.
Converts an XLSForm (survey in Excel') into a well-structured Word document, including sections, skip logic, options, and question labels. Designed to support survey documentation, training materials, and data collection workflows. The package was developed based on field experience with XLSForm and humanitarian operations, aiming to streamline documentation and enhance training efficiency.
There are two new network metrics, RWC (random walk centrality) and CBET (counting betweenness). Also available are the normalized versions of those metrics. These measures of centrality and betweenness are particularly useful for the analysis of very dense weighted networks which include loops. Traditional measures do not work as well for those network characteristics. The main reference is DePaolis at al (2022) <doi:10.1007/s41109-022-00519-2>.
Reading and writing sheets of a single Excel file into and from a list of data frames. Eases I/O of tabular data in bioinformatics while keeping them in a human readable format.
This package provides tools to download and merge data files on sub-national conflict, violence and protests from <http://www.x-sub.org>.
Implementation of a scalable, highly configurable, and e(x)tended architecture for (e)volutionary and (g)enetic (a)lgorithms. Multiple representations (binary, real-coded, permutation, and derivation-tree), a rich collection of genetic operators, as well as an extended processing pipeline are provided for genetic algorithms (Goldberg, D. E. (1989, ISBN:0-201-15767-5)), differential evolution (Price, Kenneth V., Storn, Rainer M. and Lampinen, Jouni A. (2005) <doi:10.1007/3-540-31306-0>), simulated annealing (Aarts, E., and Korst, J. (1989, ISBN:0-471-92146-7)), grammar-based genetic programming (Geyer-Schulz (1997, ISBN:978-3-7908-0830-X)), grammatical evolution (Ryan, C., O'Neill, M., and Collins, J. J. (2018) <doi:10.1007/978-3-319-78717-6>), and grammatical differential evolution (O'Neill, M. and Brabazon, A. (2006) in Arabinia, H. (2006, ISBN:978-193-241596-3). All algorithms reuse basic adaptive mechanisms for performance optimization. For xega's architecture, see Geyer-Schulz, A. (2025) <doi:10.5445/IR/1000187255>. Sequential or parallel execution (on multi-core machines, local clusters, and high-performance computing environments) is available for all algorithms. See <https://github.com/ageyerschulz/xega/tree/main/examples/executionModel>.
This package contains functions to identify tree-ring borders based on X-ray micro-density profiles and a Graphical User Interface (GUI) to visualize density profiles and correct tree-ring borders. Campelo F, Mayer K, Grabner M. (2019) <doi:10.1016/j.dendro.2018.11.002>.
Representation-dependent gene level operations of a genetic algorithm with binary coded genes: Initialization of random binary genes, several gene maps for binary genes, several mutation operators, several crossover operators with 1 and 2 kids, replication pipelines for 1 and 2 kids, and, last but not least, function factories for configuration. See Goldberg, D. E. (1989, ISBN:0-201-15767-5). For crossover operators, see Syswerda, G. (1989, ISBN:1-55860-066-3), Spears, W. and De Jong, K. (1991, ISBN:1-55860-208-9). For mutation operators, see Stanhope, S. A. and Daida, J. M. (1996, ISBN:0-18-201-031-7).
XMRs combine X-Bar control charts and Moving Range control charts. These functions also will recalculate the reference lines when significant change has occurred.
High-level functions to render LaTeX fragments in plots, including as labels and data symbols in ggplot2 plots, plus low-level functions to author LaTeX fragments (to produce LaTeX documents), typeset LaTeX documents (to produce DVI files), read DVI files (to produce "DVI" objects), and render "DVI" objects.
This package provides a few functions which provide a quick way of subsetting genomic admixture data and generating customizable stacked barplots.
Supports a structured approach for exploring PKPD data <https://opensource.nibr.com/xgx/>. It also contains helper functions for enabling the modeler to follow best R practices (by appending the program name, figure name location, and draft status to each plot). In addition, it enables the modeler to follow best graphical practices (by providing a theme that reduces chart ink, and by providing time-scale, log-scale, and reverse-log-transform-scale functions for more readable axes). Finally, it provides some data checking and summarizing functions for rapidly exploring pharmacokinetics and pharmacodynamics (PKPD) datasets.
This tool enables in-database scoring of XGBoost models built in R, by translating trained model objects into SQL query. XGBoost <https://github.com/dmlc/xgboost> provides parallel tree boosting (also known as gradient boosting machine, or GBM) algorithms in a highly efficient, flexible and portable way. GBM algorithm is introduced by Friedman (2001) <doi:10.1214/aos/1013203451>, and more details on XGBoost can be found in Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>.
This package provides functions for Estimating a (c)DCC-GARCH Model in large dimensions based on a publication by Engle et,al (2017) <doi:10.1080/07350015.2017.1345683> and Nakagawa et,al (2018) <doi:10.3390/ijfs6020052>. This estimation method is consist of composite likelihood method by Pakel et al. (2014) <http://paneldataconference2015.ceu.hu/Program/Cavit-Pakel.pdf> and (Non-)linear shrinkage estimation of covariance matrices by Ledoit and Wolf (2004,2015,2016). (<doi:10.1016/S0047-259X(03)00096-4>, <doi:10.1214/12-AOS989>, <doi:10.1016/j.jmva.2015.04.006>).
This package provides a set of functions devoted to multivariate exploratory statistics on textual data. Classical methods such as correspondence analysis and agglomerative hierarchical clustering are available. Chronologically constrained agglomerative hierarchical clustering enriched with labelled-by-words trees is offered. Given a division of the corpus into parts, their characteristic words and documents are identified. Further, accessing to FactoMineR functions is very easy. Two of them are relevant in textual domain. MFA() addresses multiple lexical table allowing applications such as dealing with multilingual corpora as well as simultaneously analyzing both open-ended and closed questions in surveys. See <http://xplortext.unileon.es> for examples.
This collection of gene representation-independent mechanisms for evolutionary and genetic algorithms contains four groups of functions: First, functions for selecting a gene in a population of genes according to its fitness value and for adaptive scaling of the fitness values as well as for performance optimization and measurement offer several variants for implementing the survival of the fittest. Second, evaluation functions for deterministic functions avoid recomputation. Evaluation of stochastic functions incrementally improve the estimation of the mean and variance of fitness values at almost no additional cost. Evaluation functions for gene repair handle error-correcting decoders. Third, timing and counting functions for profiling the algorithm pipeline are provided to assess bottlenecks in the algorithms. Fourth, a small collection of problem environments for function optimization, combinatorial optimization, and grammar-based genetic programming and grammatical evolution is provided for tutorial examples. The methods in the package are described by the following references: Baker, James E. (1987, ISBN:978-08058-0158-8), De Jong, Kenneth A. (1975) <https://deepblue.lib.umich.edu/handle/2027.42/4507>, Geyer-Schulz, Andreas (1997, ISBN:978-3-7908-0830-X), Grefenstette, John J. (1987, ISBN:978-08058-0158-8), Grefenstette, John J. and Baker, James E. (1989, ISBN:1-55860-066-3), Holland, John (1975, ISBN:0-472-08460-7), Lau, H. T. (1986) <doi:10.1007/978-3-642-61649-5>, Price, Kenneth V., Storn, Rainer M. and Lampinen, Jouni A. (2005) <doi:10.1007/3-540-31306-0>, Reynolds, J. C. (1993) <doi:10.1007/BF01019459>, Schaffer, J. David (1989, ISBN:1-55860-066-3), Wenstop, Fred (1980) <doi:10.1016/0165-0114(80)90031-7>, Whitley, Darrell (1989, ISBN:1-55860-066-3), Wickham, Hadley (2019, ISBN:978-815384571).
Fits hierarchical regularized regression models to incorporate potentially informative external data, Weaver and Lewinger (2019) <doi:10.21105/joss.01761>. Utilizes coordinate descent to efficiently fit regularized regression models both with and without external information with the most common penalties used in practice (i.e. ridge, lasso, elastic net). Support for standard R matrices, sparse matrices and big.matrix objects.
This package provides comprehensive functionality to read, write and format Excel data.
Download data from individual XKCD comics, written by Randall Munroe <https://xkcd.com/>.
This package provides support for transformations of numeric aggregates between statistical classifications (e.g. occupation or industry categorisations) using the Crossmaps framework. Implements classes for representing transformations between a source and target classification as graph structures, and methods for validating and applying crossmaps to transform data collected under the source classification into data indexed using the target classification codes. Documentation about the Crossmaps framework is provided in the included vignettes and in Huang (2024, <doi:10.48550/arXiv.2406.14163>).
An extension for the xml2 package to transform XML documents by applying an xslt style-sheet.
Miscellaneous functions used for x-engineering (feature engineering) or for supporting in other packages maintained by Shichen Xie'.