Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This is a collection of tools for assessment of feature importance and feature effects. Key functions are:
feature_importance()for assessment of global level feature importance,ceteris_paribus()for calculation of the what-if plots,partial_dependence()for partial dependence plots,conditional_dependence()for conditional dependence plots,accumulated_dependence()for accumulated local effects plots,aggregate_profiles()andcluster_profiles()for aggregation of ceteris paribus profiles,generic
print()andplot()for better usability of selected explainers,generic
plotD3()for interactive, D3 based explanations, andgeneric
describe()for explanations in natural language.
This package provides classes and methods for handling genetic data. It includes classes to represent genotypes and haplotypes at single markers up to multiple markers on multiple chromosomes. Function include allele frequencies, flagging homo/heterozygotes, flagging carriers of certain alleles, estimating and testing for Hardy-Weinberg disequilibrium, estimating and testing for linkage disequilibrium, ...
This package provides a compendium of new geometries, coordinate systems, statistical transformations, scales and fonts for ggplot2, including splines, 1d and 2d densities, univariate average shifted histograms, a new map coordinate system based on the PROJ.4-library along with geom_cartogram() that mimics the original functionality of geom_map(), formatters for "bytes", a stat_stepribbon() function, increased plotly compatibility and the StateFace open source font ProPublica. Further new functionality includes lollipop charts, dumbbell charts, the ability to encircle points and coordinate-system-based text annotations.
This package implements core utilities for single-cell RNA-seq data analysis. Contained within are utility functions for working with DE matrices and count matrices, a collection of functions for manipulating and plotting data via ggplot2, and functions to work with cell graphs and cell embeddings. Graph-based methods include embedding kNN cell graphs into a UMAP, collapsing vertices of each cluster in the graph, and propagating graph labels.
This package provides visualizations for SHAP (SHapley Additive exPlanations) such as waterfall plots, force plots, various types of importance plots, dependence plots, and interaction plots. These plots act on a shapviz object created from a matrix of SHAP values and a corresponding feature dataset. Wrappers for the R packages xgboost, lightgbm, fastshap, shapr, h2o, treeshap, DALEX, and kernelshap are added for convenience. By separating visualization and computation, it is possible to display factor variables in graphs, even if the SHAP values are calculated by a model that requires numerical features. The plots are inspired by those provided by the shap package in Python, but there is no dependency on it.
This r-acceptancesampling provides functionality for creating and evaluating acceptance sampling plans. Acceptance sampling is a methodology commonly used in quality control and improvement. International standards of acceptance sampling provide sampling plans for specific circumstances. The aim of this package is to provide an easy-to-use interface to visualize single, double or multiple sampling plans. In addition, methods have been provided to enable the user to assess sampling plans against pre-specified levels of performance, as measured by the probability of acceptance for a given level of quality in the lot.
This package provides pre-fit and post-fit methods for detecting separation and infinite maximum likelihood estimates in generalized linear models with categorical responses. The pre-fit methods apply on binomial-response generalized liner models such as logit, probit and cloglog regression, and can be directly supplied as fitting methods to the glm() function. The post-fit methods apply to models with categorical responses, including binomial-response generalized linear models and multinomial-response models, such as baseline category logits and adjacent category logits models; for example, the models implemented in the brglm2 package. The post-fit methods successively refit the model with increasing number of iteratively reweighted least squares iterations, and monitor the ratio of the estimated standard error for each parameter to what it has been in the first iteration.
This is a subset of the original spatstat package, containing the user-level code from spatstat which performs geometrical operations, except for the geometry of linear networks.
Flexibly restructure and aggregate data using just two functions: melt and cast. This package provides them.
This package contains various tools for working with and evaluating cross-validated area under the ROC curve (AUC) estimators. The primary functions of the package are ci.cvAUC and ci.pooled.cvAUC, which report cross-validated AUC and compute confidence intervals for cross-validated AUC estimates based on influence curves for i.i.d. and pooled repeated measures data, respectively.
This package contains the data set for the crowd-sourced benchmarks from running the benchmarkme package.
This package computes fast (relative to other implementations) approximate Shapley values for any supervised learning model. Shapley values help to explain the predictions from any black box model using ideas from game theory; see doi.org/10.1007/s10115-013-0679-x for details.
This package provides simple, flexible assertions on data.frame or data.table objects with verbose output for vetting. While other assertion packages apply towards more general use-cases, assertable is tailored towards tabular data. It includes functions to check variable names and values, whether the dataset contains all combinations of a given set of unique identifiers, and whether it is a certain length. In addition, assertable includes utility functions to check the existence of target files and to efficiently import multiple tabular data files into one data.table.
This package provides a command line parser inspired by Python's optparse library to be used with Rscript to write shebang scripts that accept short and long options.
This package provides an implementation of the Anderson-Darling GoF test with p-value calculation based on Marsaglia's 2004 paper "Evaluating the Anderson-Darling Distribution".
This package provides density, probability and quantile functions, and random number generation for (skew) stable distributions, using the parametrizations of Nolan.
Fit generalized linear models with binomial responses using either an adjusted-score approach to bias reduction or maximum penalized likelihood where penalization is by Jeffreys invariant prior. These procedures return estimates with improved frequentist properties (bias, mean squared error) that are always finite even in cases where the maximum likelihood estimates are infinite (data separation). Fitting takes place by fitting generalized linear models on iteratively updated pseudo-data. The interface is essentially the same as glm. More flexibility is provided by the fact that custom pseudo-data representations can be specified and used for model fitting. Functions are provided for the construction of confidence intervals for the reduced-bias estimates.
This package provides tools to get text from images of text using Abbyy Cloud Optical Character Recognition (OCR) API. With abbyyyR, one can easily OCR images, barcodes, forms, documents with machine readable zones, e.g. passports and get the results in a variety of formats including plain text and XML. To learn more about the Abbyy OCR API, see http://ocrsdk.com/.
This is a package for the computation of highest density regions in one and two dimensions, kernel estimation of univariate density functions conditional on one covariate, and multimodal regression.
This package provides a port of the web-based software DAGitty for analyzing structural causal models (also known as directed acyclic graphs or DAGs). This package computes covariate adjustment sets for estimating causal effects, enumerates instrumental variables, derives testable implications (d-separation and vanishing tetrads), generates equivalent models, and includes a simple facility for data simulation.
This package provides a collection of utilities that allow programming with R's operators. Routines allow classifying operators, translating to and from an operator and its underlying function, and inverting some operators (e.g. comparison operators), etc. All methods can be extended to custom infix operators.
Functions and examples are provided for transmission/disequilibrium tests for extended marker haplotypes, as in Clayton, D. and Jones, H. (1999) "Transmission/disequilibrium tests for extended marker haplotypes".
This package provides an implementation of the FastICA algorithm to perform independent component analysis (ICA) and projection pursuit.
This package provides a toolkit for all URL-handling needs, including encoding and decoding, parsing, parameter extraction and modification. All functions are designed to be both fast and entirely vectorized. It is intended to be useful for people dealing with web-related datasets, such as server-side logs, although may be useful for other situations involving large sets of URLs.