Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Collection of packages for work with API Google Ads <https://developers.google.com/google-ads/api/docs/start>, Yandex Direct <https://yandex.ru/dev/direct/>, Yandex Metrica <https://yandex.ru/dev/metrika/>, MyTarget <https://target.my.com/help/advertisers/api_arrangement/ru>, Vkontakte <https://vk.com/dev/methods>, Facebook <https://developers.facebook.com/docs/marketing-apis/> and AppsFlyer <https://support.appsflyer.com/hc/en-us/articles/207034346-Using-Pull-API-aggregate-data>. This packages allows you loading data from ads account and manage your ads materials.
This package provides functions to calculate the best linear unbiased prediction of genotype-by-environment metrics: ecovalence, environmental variance, Finlay and Wilkinson regression and Lin and Binns superiority measure, based on a multi-environment genomic prediction model.
This package provides a unified algorithm, blockwise-majorization-descent (BMD), for efficiently computing the solution paths of the group-lasso penalized least squares, logistic regression, Huberized SVM and squared SVM. The package is an implementation of Yang, Y. and Zou, H. (2015) <doi:10.1007/s11222-014-9498-5>.
Large language models are readily accessible via API. This package lowers the barrier to use the API inside of your development environment. For more on the API, see <https://platform.openai.com/docs/introduction>.
In statistical modeling, there is a wide variety of regression models for categorical dependent variables (nominal or ordinal data); yet, there is no software embracing all these models together in a uniform and generalized format. Following the methodology proposed by Peyhardi, Trottier, and Guédon (2015) <doi:10.1093/biomet/asv042>, we introduce GLMcat', an R package to estimate generalized linear models implemented under the unified specification (r, F, Z). Where r represents the ratio of probabilities (reference, cumulative, adjacent, or sequential), F the cumulative cdf function for the linkage, and Z, the design matrix. The package accompanies the paper "GLMcat: An R Package for Generalized Linear Models for Categorical Responses" in the Journal of Statistical Software, Volume 114, Issue 9 (see <doi:10.18637/jss.v114.i09>).
Penalised likelihood estimation of a covariance matrix via the ridge-regularised covglasso estimator described in Cibinel et al. (2024) <doi:10.48550/arXiv.2410.02403>. Based on the C++ code of the R package covglasso (by Michael Fop, <https://orcid.org/0000-0003-3936-2757>) and the R code of icf (by Mathias Drton, <https://orcid.org/0000-0001-5614-3025>) within the R package ggm'.
This function converts mfpr, numeric, or character strings representing numbers to bigq format without loss of precision.
Fiducial framework to perform inference on the quantiles for a generalized Pareto distribution model and on the parameters of the Pareto exceedance distribution, assuming the exceedance threshold is a known or unknown parameter. Reference: Damian V. Wandler & Jan Hannig (2012) <doi:10.1007/s10687-011-0127-9>.
Add a scroll back to top Font Awesome icon <https://fontawesome.com/> in rmarkdown documents and shiny apps thanks to jQuery GoTop <https://scottdorman.blog/jquery-gotop/>.
Routines for log-linear models of incomplete contingency tables, including some latent class models, via EM and Fisher scoring approaches. Allows bootstrapping. See Espeland and Hui (1987) <doi:10.2307/2531553> for general approach.
Send error reports to the Google Error Reporting service <https://cloud.google.com/error-reporting/> and view errors and assign error status in the Google Error Reporting user interface.
Represents generalized geometric ellipsoids with the "(U,D)" representation. It allows degenerate and/or unbounded ellipsoids, together with methods for linear and duality transformations, and for plotting. Thus ellipsoids are naturally extended to include lines, hyperplanes, points, cylinders, etc. This permits exploration of a variety to statistical issues that can be visualized using ellipsoids as discussed by Friendly, Fox & Monette (2013), Elliptical Insights: Understanding Statistical Methods Through Elliptical Geometry <doi:10.1214/12-STS402>.
Scrapes football match shots data from Understat <https://understat.com/> and visualizes it using interactive plots: - A detailed shot map displaying the location, type, and xG value of shots taken by both teams. - An xG timeline chart showing the cumulative xG for each team over time, annotated with the details of scored goals.
Fits weighted quantile sum (WQS) regressions for one or more chemical groups with continuous or binary outcomes. Wheeler D, Czarnota J.(2016) <doi:10.1289/isee.2016.4698>.
Set of functions for step-wise generation of (weighted) graphs. Aimed for research in the field of single- and multi-objective combinatorial optimization. Graphs are generated adding nodes, edges and weights. Each step may be repeated multiple times with different predefined and custom generators resulting in high flexibility regarding the graph topology and structure of edge weights.
Plot density and distribution functions with automatic selection of suitable regions. Numerically invert (compute quantiles) distribution functions. Simulate real and complex numbers from distributions of their magnitude and arguments. Optionally, the magnitudes and/or arguments may be fixed in almost arbitrary ways. Create polynomials from roots given in Cartesian or polar form. Small programming utilities: check if an object is identical to NA, count positional arguments in a call, set intersection of more than two sets, check if an argument is unnamed, compute the graph of S4 classes in packages.
This package performs statistical data analysis of various Plant Breeding experiments. Contains functions for Line by Tester analysis as per Arunachalam, V.(1974) <http://repository.ias.ac.in/89299/> and Diallel analysis as per Griffing, B. (1956) <https://www.publish.csiro.au/bi/pdf/BI9560463>.
This package contains functions to create life history parameter plots from raw data. The plots are created using ggplot2', and calculations done using the tidyverse collection of packages. The package contains references to FishBase (Froese R., Pauly D., 2023) <https://www.fishbase.se/>.
Projections are common dimensionality reduction methods, which represent high-dimensional data in a two-dimensional space. However, when restricting the output space to two dimensions, which results in a two dimensional scatter plot (projection) of the data, low dimensional similarities do not represent high dimensional distances coercively [Thrun, 2018] <DOI: 10.1007/978-3-658-20540-9>. This could lead to a misleading interpretation of the underlying structures [Thrun, 2018]. By means of the 3D topographic map the generalized Umatrix is able to depict errors of these two-dimensional scatter plots. The package is derived from the book of Thrun, M.C.: "Projection Based Clustering through Self-Organization and Swarm Intelligence" (2018) <DOI:10.1007/978-3-658-20540-9> and the main algorithm called simplified self-organizing map for dimensionality reduction methods is published in Thrun, M.C. and Ultsch, A.: "Uncovering High-dimensional Structures of Projections from Dimensionality Reduction Methods" (2020) <DOI:10.1016/j.mex.2020.101093>.
This package provides a suite of custom R Markdown formats and templates for authoring web pages styled with the GOV.UK Design System.
This package provides a unified framework for sparse-group regularization and precision matrix estimation in Gaussian graphical models. It implements multiple sparse-group penalties, including sparse-group lasso, sparse-group adaptive lasso, sparse-group SCAD, and sparse-group MCP, and solves them efficiently using ADMM-based optimization. The package is designed for high-dimensional network inference where both sparsity and group structure are present.
Generalized factor model is implemented for ultra-high dimensional data with mixed-type variables. Two algorithms, variational EM and alternate maximization, are designed to implement the generalized factor model, respectively. The factor matrix and loading matrix together with the number of factors can be well estimated. This model can be employed in social and behavioral sciences, economy and finance, and genomics, to extract interpretable nonlinear factors. More details can be referred to Wei Liu, Huazhen Lin, Shurong Zheng and Jin Liu. (2021) <doi:10.1080/01621459.2021.1999818>.
Trace plots and convergence diagnostics for Markov Chain Monte Carlo (MCMC) algorithms on highly multivariate or unordered spaces. Methods outlined in a forthcoming paper.
Fast algorithms for robust estimation with large samples of multivariate observations. Estimation of the geometric median, robust k-Gmedian clustering, and robust PCA based on the Gmedian covariation matrix.