Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Multiscale Graph Correlation (MGC) is a framework developed by Vogelstein et al. (2019) <DOI:10.7554/eLife.41690> that extends global correlation procedures to be multiscale; consequently, MGC tests typically require far fewer samples than existing methods for a wide variety of dependence structures and dimensionalities, while maintaining computational efficiency. Moreover, MGC provides a simple and elegant multiscale characterization of the potentially complex latent geometry underlying the relationship.
Clustering via parsimonious Gaussian Mixtures of Experts using the MoEClust models introduced by Murphy and Murphy (2020) <doi:10.1007/s11634-019-00373-8>. This package fits finite Gaussian mixture models with a formula interface for supplying gating and/or expert network covariates using a range of parsimonious covariance parameterisations from the GPCM family via the EM/CEM algorithm. Visualisation of the results of such models using generalised pairs plots and the inclusion of an additional noise component is also facilitated. A greedy forward stepwise search algorithm is provided for identifying the optimal model in terms of the number of components, the GPCM covariance parameterisation, and the subsets of gating/expert network covariates.
Analysis and visualisation of synchrony, interaction, and joint movements from audio and video movement data of a group of music performers. The demo is data described in Clayton, Leante, and Tarsitani (2021) <doi:10.17605/OSF.IO/KS325>, while example analyses can be found in Clayton, Jakubowski, and Eerola (2019) <doi:10.1177/1029864919844809>. Additionally, wavelet analysis techniques have been applied to examine movement-related musical interactions, as shown in Eerola et al. (2018) <doi:10.1098/rsos.171520>.
Estimation of multivariate normal (MVN) and student-t data of arbitrary dimension where the pattern of missing data is monotone. See Pantaleo and Gramacy (2010) <doi:10.48550/arXiv.0907.2135>. Through the use of parsimonious/shrinkage regressions (plsr, pcr, lasso, ridge, etc.), where standard regressions fail, the package can handle a nearly arbitrary amount of missing data. The current version supports maximum likelihood inference and a full Bayesian approach employing scale-mixtures for Gibbs sampling. Monotone data augmentation extends this Bayesian approach to arbitrary missingness patterns. A fully functional standalone interface to the Bayesian lasso (from Park & Casella), Normal-Gamma (from Griffin & Brown), Horseshoe (from Carvalho, Polson, & Scott), and ridge regression with model selection via Reversible Jump, and student-t errors (from Geweke) is also provided.
The Markov Decision Processes (MDP) toolbox proposes functions related to the resolution of discrete-time Markov Decision Processes: finite horizon, value iteration, policy iteration, linear programming algorithms with some variants and also proposes some functions related to Reinforcement Learning.
Electronic health records (EHR) linked with biorepositories are a powerful platform for translational studies. A major bottleneck exists in the ability to phenotype patients accurately and efficiently. Towards that end, we developed an automated high-throughput phenotyping method integrating International Classification of Diseases (ICD) codes and narrative data extracted using natural language processing (NLP). Specifically, our proposed method, called MAP (Map Automated Phenotyping algorithm), fits an ensemble of latent mixture models on aggregated ICD and NLP counts along with healthcare utilization. The MAP algorithm yields a predicted probability of phenotype for each patient and a threshold for classifying subjects with phenotype yes/no (See Katherine P. Liao, et al. (2019) <doi:10.1093/jamia/ocz066>.).
An S4 implementation of the unbiased extension of the model- assisted synthetic-regression estimator proposed by Mandallaz (2013) <DOI:10.1139/cjfr-2012-0381>, Mandallaz et al. (2013) <DOI:10.1139/cjfr-2013-0181> and Mandallaz (2014) <DOI:10.1139/cjfr-2013-0449>. It yields smaller variances than the standard bias correction, the generalised regression estimator.
Maps and other related data of Finland.
Bending non-positive-definite (symmetric) matrices to positive-definite, using weighted and unweighted methods. Jorjani, H., et al. (2003) <doi:10.3168/jds.S0022-0302(03)73646-7>. Schaeffer, L. R. (2014) <http://animalbiosciences.uoguelph.ca/~lrs/ELARES/PDforce.pdf>.
Density, distribution function, quantile function, and random generation function based on Salem, H. M. (2019)<doi:10.5539/mas.v13n2p54>. In addition, a numerical method for maximum likelihood estimation is provided.
The chi-squared test for goodness of fit and independence test.
This package contains functions for performing Mokken scale analysis on test and questionnaire data. It includes an automated item selection algorithm, and various checks of model assumptions.
Developed for the following tasks. 1- simulating realizations from the canonical, restricted, and unrestricted finite mixture models. 2- Monte Carlo approximation for density function of the finite mixture models. 3- Monte Carlo approximation for the observed Fisher information matrix, asymptotic standard error, and the corresponding confidence intervals for parameters of the mixture models sing the method proposed by Basford et al. (1997) <https://espace.library.uq.edu.au/view/UQ:57525>.
This package contains a set of tools for constructing and coercing into and from the "mdate" class. This date class implements ISO 8601-2:2019(E) and allows regular dates to be annotated to express unspecified date components, approximate or uncertain date components, date ranges, and sets of dates. This is useful for describing and analysing temporal information, whether historical or recent, where date precision may vary.
Multivariate Information-based Inductive Causation, better known by its acronym MIIC, is a causal discovery method, based on information theory principles, which learns a large class of causal or non-causal graphical models from purely observational data, while including the effects of unobserved latent variables. Starting from a complete graph, the method iteratively removes dispensable edges, by uncovering significant information contributions from indirect paths, and assesses edge-specific confidences from randomization of available data. The remaining edges are then oriented based on the signature of causality in observational data. The recent more interpretable MIIC extension (iMIIC) further distinguishes genuine causes from putative and latent causal effects, while scaling to very large datasets (hundreds of thousands of samples). Since the version 2.0, MIIC also includes a temporal mode (tMIIC) to learn temporal causal graphs from stationary time series data. MIIC has been applied to a wide range of biological and biomedical data, such as single cell gene expression data, genomic alterations in tumors, live-cell time-lapse imaging data (CausalXtract), as well as medical records of patients. MIIC brings unique insights based on causal interpretation and could be used in a broad range of other data science domains (technology, climatology, economy, ...). For more information, you can refer to: Simon et al., eLife 2024, <doi:10.1101/2024.02.06.579177>, Ribeiro-Dantas et al., iScience 2024, <doi:10.1016/j.isci.2024.109736>, Cabeli et al., NeurIPS 2021, <https://why21.causalai.net/papers/WHY21_24.pdf>, Cabeli et al., Comput. Biol. 2020, <doi:10.1371/journal.pcbi.1007866>, Li et al., NeurIPS 2019, <https://papers.nips.cc/paper/9573-constraint-based-causal-structure-learning-with-consistent-separating-sets>, Verny et al., PLoS Comput. Biol. 2017, <doi:10.1371/journal.pcbi.1005662>, Affeldt et al., UAI 2015, <https://auai.org/uai2015/proceedings/papers/293.pdf>. Changes from the previous 1.5.3 release on CRAN are available at <https://github.com/miicTeam/miic_R_package/blob/master/NEWS.md>.
This package provides functions and wrappers for using the Multiple Aggregation Prediction Algorithm (MAPA) for time series forecasting. MAPA models and forecasts time series at multiple temporal aggregation levels, thus strengthening and attenuating the various time series components for better holistic estimation of its structure. For details see Kourentzes et al. (2014) <doi:10.1016/j.ijforecast.2013.09.006>.
This is a method (MinED) for mining probability distributions using deterministic sampling which is proposed by Joseph, Wang, Gu, Lv, and Tuo (2019) <DOI:10.1080/00401706.2018.1552203>. The MinED samples can be used for approximating the target distribution. They can be generated from a density function that is known only up to a proportionality constant and thus, it might find applications in Bayesian computation. Moreover, the MinED samples are generated with much fewer evaluations of the density function compared to random sampling-based methods such as MCMC and therefore, this method will be especially useful when the unnormalized posterior is expensive or time consuming to evaluate. This research is supported by a U.S. National Science Foundation grant DMS-1712642.
Suite of interactive functions and helpers for selecting and editing geospatial data.
This package provides methods for performing genetic risk prediction from genotype data. You can use it to perform risk prediction for individuals, or for families with missing data.
Function ModEstM() is the only one of this package, it estimates the modes of an empirical univariate distribution. It relies on the stats::density() function, even for input control. Due to very good performance of the density estimation, computation time is not an issue. The multiple modes are handled using dplyr::group_by(). For conditions and rates of convergences, see Eddy (1980) <doi:10.1214/aos/1176345080>.
Algorithms for multivariate outlier detection when missing values occur. Algorithms are based on Mahalanobis distance or data depth. Imputation is based on the multivariate normal model or uses nearest neighbour donors. The algorithms take sample designs, in particular weighting, into account. The methods are described in Bill and Hulliger (2016) <doi:10.17713/ajs.v45i1.86>.
Nonparametric approach to estimate the location of block boundaries (change-points) of non-overlapping blocks in a random symmetric matrix which consists of random variables whose distribution changes from block to block. BRAULT Vincent, OUADAH Sarah, SANSONNET Laure and LEVY-LEDUC Celine (2017) <doi:10.1016/j.jmva.2017.12.005>.
This package provides methods for analyzing and using quartets displayed on a collection of gene trees, primarily to make inferences about the species tree or network under the multi-species coalescent model. These include quartet hypothesis tests for the model, as developed by Mitchell et al. (2019) <doi:10.1214/19-EJS1576>, simplex plots of quartet concordance factors as presented by Allman et al. (2020) <doi:10.1101/2020.02.13.948083>, species tree inference methods based on quartet distances of Rhodes (2019) <doi:10.1109/TCBB.2019.2917204> and Yourdkhani and Rhodes (2019) <doi:10.1007/s11538-020-00773-4>, the NANUQ algorithm for inference of level-1 species networks of Allman et al. (2019) <doi:10.1186/s13015-019-0159-2>, the TINNIK algorithm for inference of the tree of blobs of an arbitrary network of Allman et al.(2022) <doi:10.1007/s00285-022-01838-9>, and NANUQ+ routines for resolving multifurcations in the tree of blobs to cycles as in Allman et al.(2024) (forthcoming). Software announcement by Rhodes et al. (2020) <doi:10.1093/bioinformatics/btaa868>.
Calculates the Most Probable Number (MPN) to quantify the concentration (density) of microbes in serial dilutions of a laboratory sample (described in Jarvis, 2010 <doi:10.1111/j.1365-2672.2010.04792.x>). Also calculates the Aerobic Plate Count (APC) for similar microbial enumeration experiments.