Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Efficient implementations of the algorithms in the Almost-Matching-Exactly framework for interpretable matching in causal inference. These algorithms match units via a learned, weighted Hamming distance that determines which covariates are more important to match on. For more information and examples, see the Almost-Matching-Exactly website.
Analyze and model heteroskedastic behavior in financial time series.
Defines a collection of functions to compute average power and sample size for studies that use the false discovery rate as the final measure of statistical significance.
An implementation of revised functional regression models for multiple genetic variation data, such as single nucleotide polymorphism (SNP) data, which provides revised functional linear regression models, partially functional interaction regression analysis with penalty-based techniques and corresponding drawing functions, etc.(Ruzong Fan, Yifan Wang, James L. Mills, Alexander F. Wilson, Joan E. Bailey-Wilson, and Momiao Xiong (2013) <doi:10.1002/gepi.21757>).
Computes the power and sample size (PASS) required to test for the difference in the mean function between two groups under a repeatedly measured longitudinal or sparse functional design. See the manuscript by Koner and Luo (2023) <https://salilkoner.github.io/assets/PASS_manuscript.pdf> for details of the PASS formula and computational details. The details of the testing procedure for univariate and multivariate response are presented in Wang (2021) <doi:10.1214/21-EJS1802> and Koner and Luo (2023) <arXiv:2302.05612> respectively.
Opens a shiny app which supports theoretical and computational analysis of block designs for symmetrical and mixed level factorial experiments. This package includes tools to check whether a design has orthogonal factorial structure (OFS) with balance or not and is able to find the orthogonality deviation value if not having OFS. This package includes function to evaluate efficiency factor of all factorial effects in two situations, in the first situation if the design is verified with OFS and balance then calculate the efficiencies of all factorial effects using a specific analytical procedure and in the second situation if the design is verified with non-OFS and balance then a new general method has been developed and used to calculate efficiencies under the condition that the design should be proper and equi-replicated, See Gupta, S.C. and Mukerjee, R. (1987): "A Calculus for factorial arrangements". Lecture Notes in Statistics. No. 59, Springer-Verlag, Berlin, New York, <doi:10.1007/978-1-4419-8730-3>. For the easy use of package, shiny app is used for giving inputs and inputs validation.
This package provides a toolbox to derive flexible cutoffs for fit indices in Covariance-based Structural Equation Modeling based on the paper by Niemand & Mai (2018) <doi:10.1007/s11747-018-0602-9>. Flexible cutoffs are an alternative to fixed cutoffs - rules-of-thumb - regarding an appropriate cutoff for fit indices such as CFI or SRMR'. It has been demonstrated that these flexible cutoffs perform better than fixed cutoffs in grey areas where misspecification is not easy to detect. The package provides an alternative to the tool at <https://flexiblecutoffs.org> as it allows to tailor flexible cutoffs to a given dataset and model, which is so far not available in the tool. The package simulates fit indices based on a given dataset and model and then estimates the flexible cutoffs. Some useful functions, e.g., to determine the GoF- or BoF-nature of a fit index, are provided. So far, additional options for a relative use (is a model better than another?) are provided in an exploratory manner.
Analyzes the function calls in an R package and creates a hive plot of the calls, dividing them among functions that only make outgoing calls (sources), functions that have only incoming calls (sinks), and those that have both incoming calls and make outgoing calls (managers). Function calls can be mapped by their absolute numbers, their normalized absolute numbers, or their rank. FuncMap should be useful for comparing packages at a high level for their overall design. Plus, it's just plain fun. The hive plot concept was developed by Martin Krzywinski (www.hiveplot.com) and inspired this package. Note: this package is maintained for historical reasons. HiveR is a full package for creating hive plots.
This package provides a general estimation framework for multi-state Markov processes with flexible specification of the transition intensities. The log-transition intensities can be specified through Generalised Additive Models which allow for virtually any type of covariate effect. Elementary specifications such as time-homogeneous processes and simple parametric forms are also supported. There are no limitations on the type of process one can assume, with both forward and backward transitions allowed and virtually any number of states.
Visualize as flow diagrams the logic of functions, expressions or scripts in a static way or when running a call, visualize the dependencies between functions or between modules in a shiny app, and more.
Perform mathematical operations on R formula (add, subtract, multiply, etc.) and substitute parts of formula.
This package creates a HTML widget which displays the results of searching for a pattern in files in a given folder. The results can be viewed in the RStudio viewer pane, included in a R Markdown document or in a Shiny application. Also provides a Shiny application allowing to run this widget and to navigate in the files found by the search. Instead of creating a HTML widget, it is also possible to get the results of the search in a tibble'. The search is performed by the grep command-line utility.
This package provides a collection of datasets essential for functional genomic analysis. Gene names, gene positions, cytoband information, sourced from Ensembl and phenotypes association graph prepared from GWAScatalog are included. Data is available in both GRCh37 and 38 builds. These datasets facilitate a wide range of genomic studies, including the identification of genetic variants, exploration of genomic features, and post-GWAS functional analysis.
Many Fitbit users, and R-friendly Fitbit users especially, have found themselves curious about their Fitbit data. Fitbit aggregates a large amount of personal data, much of which is interesting for personal research and to satisfy curiosity, and is even potentially useful in medical settings. The goal of fitbitr is to make interfacing with the Fitbit API as streamlined as possible, to make it simple for R users of all backgrounds and comfort levels to analyze their Fitbit data and do whatever they want with it! Currently, fitbitr includes methods for pulling data on activity, sleep, and heart rate, but this list is likely to grow in the future as the package gains more traction and more requests for new methods to be implemented come in. You can find details on the Fitbit API at <https://dev.fitbit.com/build/reference/web-api/>.
This package provides functions for analysing and modelling extreme events in financial time Series. The topics include: (i) data pre-processing, (ii) explorative data analysis, (iii) peak over threshold modelling, (iv) block maxima modelling, (v) estimation of VaR and CVaR, and (vi) the computation of the extreme index.
Estimates and provides inference for quantities that assess high dimensional mediation and potential surrogate markers including the direct effect of treatment, indirect effect of treatment, and the proportion of treatment effect explained by a surrogate/mediator; details are described in Zhou et al (2022) <doi:10.1002/sim.9352> and Zhou et al (2020) <doi:10.1093/biomet/asaa016>. This package relies on the optimization software MOSEK', <https://www.mosek.com>.
This package provides tools for describing and analysing free sorting data. Main methods are computation of consensus partition and factorial analysis of the dissimilarity matrix between stimuli (using multidimensional scaling approach).
This package provides a flexible set of tools for matching two un-linked data sets. fedmatch allows for three ways to match data: exact matches, fuzzy matches, and multi-variable matches. It also allows an easy combination of these three matches via the tier matching function.
Streamlines the training, evaluation, and comparison of multiple machine learning models with minimal code by providing comprehensive data preprocessing and support for a wide range of algorithms with hyperparameter tuning. It offers performance metrics and visualization tools to facilitate efficient and effective machine learning workflows.
Processing forest inventory data with methods such as simple random sampling, stratified random sampling and systematic sampling. There are also functions for yield and growth predictions and model fitting, linear and nonlinear grouped data fitting, and statistical tests. References: Kershaw Jr., Ducey, Beers and Husch (2016). <doi:10.1002/9781118902028>.
To help you access, transform, analyze, and visualize ForestGEO data, we developed a collection of R packages (<https://forestgeo.github.io/fgeo/>). This package, in particular, helps you to plot ForestGEO data. To learn more about ForestGEO visit <https://forestgeo.si.edu/>.
This package provides a dynamic programming algorithm for the fast segmentation of univariate signals into piecewise constant profiles. The fpop package is a wrapper to a C++ implementation of the fpop (Functional Pruning Optimal Partioning) algorithm described in Maidstone et al. 2017 <doi:10.1007/s11222-016-9636-3>. The problem of detecting changepoints in an univariate sequence is formulated in terms of minimising the mean squared error over segmentations. The fpop algorithm exactly minimizes the mean squared error for a penalty linear in the number of changepoints.
Simulates and fits semiparametric shared frailty models under a wide range of frailty distributions using a consistent and asymptotically-normal estimator. Currently supports: gamma, power variance function, log-normal, and inverse Gaussian frailty models.
Unified regularized estimating equation solver. Currently the package includes one solver with the l1 penalty only. More solvers and penalties are under development. Reference: Yi Yang, Yuwen Gu, Yue Zhao, Jun Fan (2021) <doi:10.48550/arXiv.2110.11074>.