Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Canonical correlation analysis (CCA) via reduced-rank regression with support for regularization and cross-validation. Several methods for estimating CCA in high-dimensional settings are implemented. The first set of methods, cca_rrr() (and variants: cca_group_rrr() and cca_graph_rrr()), assumes that one dataset is high-dimensional and the other is low-dimensional, while the second, ecca() (for Efficient CCA) assumes that both datasets are high-dimensional. For both methods, standard l1 regularization as well as group-lasso regularization are available. cca_graph_rrr further supports total variation regularization when there is a known graph structure among the variables of the high-dimensional dataset. In this case, the loadings of the canonical directions of the high-dimensional dataset are assumed to be smooth on the graph. For more details see Donnat and Tuzhilina (2024) <doi:10.48550/arXiv.2405.19539> and Wu, Tuzhilina and Donnat (2025) <doi:10.48550/arXiv.2507.11160>.
Combines taxonomic classifications of high-throughput 16S rRNA gene sequences with reference proteomes of archaeal and bacterial taxa to generate amino acid compositions of community reference proteomes. Calculates chemical metrics including carbon oxidation state ('Zc'), stoichiometric oxidation and hydration state ('nO2 and nH2O'), H/C, N/C, O/C, and S/C ratios, grand average of hydropathicity ('GRAVY'), isoelectric point ('pI'), protein length, and average molecular weight of amino acid residues. Uses precomputed reference proteomes for archaea and bacteria derived from the Genome Taxonomy Database ('GTDB'). Also includes reference proteomes derived from the NCBI Reference Sequence ('RefSeq') database and manual mapping from the RDP Classifier training set to RefSeq taxonomy as described by Dick and Tan (2023) <doi:10.1007/s00248-022-01988-9>. Processes taxonomic classifications in RDP Classifier format or OTU tables in phyloseq-class objects from the Bioconductor package phyloseq'.
Software to facilitates taking movement data in xyt format and pairing it with raster covariates within a continuous time Markov chain (CTMC) framework. As described in Hanks et al. (2015) <DOI:10.1214/14-AOAS803> , this allows flexible modeling of movement in response to covariates (or covariate gradients) with model fitting possible within a Poisson GLM framework.
Evaluates the probability density function (PDF), cumulative distribution function (CDF), quantile function (QF), random numbers and maximum likelihood estimates (MLEs) of well-known complementary binomial-G, complementary negative binomial-G and complementary geometric-G families of distributions taking baseline models such as exponential, extended exponential, Weibull, extended Weibull, Fisk, Lomax, Burr-XII and Burr-X. The functions also allow computing the goodness-of-fit measures namely the Akaike-information-criterion (AIC), the Bayesian-information-criterion (BIC), the minimum value of the negative log-likelihood (-2L) function, Anderson-Darling (A) test, Cramer-Von-Mises (W) test, Kolmogorov-Smirnov test, P-value and convergence status. Moreover, some commonly used data sets from the fields of actuarial, reliability, and medical science are also provided. Related works include: a) Tahir, M. H., & Cordeiro, G. M. (2016). Compounding of distributions: a survey and new generalized classes. Journal of Statistical Distributions and Applications, 3, 1-35. <doi:10.1186/s40488-016-0052-1>.
This package provides the source and examples for James P. Howard, II, "Computational Methods for Numerical Analysis with R," <https://jameshoward.us/cmna/>, a book on numerical methods in R.
Enables creation of visualizations using the CanvasXpress framework in R. CanvasXpress is a standalone JavaScript library for reproducible research with complete tracking of data and end-user modifications stored in a single PNG image that can be played back. See <https://www.canvasxpress.org> for more information.
This package provides a minimal R-package to approximately detect global and imported functions or variables from R-source code or R-packages by static code analysis.
CGAL is a C++ library that aims to provide easy access to efficient and reliable algorithms in computational geometry. Since its version 4, CGAL can be used as standalone header-only library and is available under a double GPL-3|LGPL license. <https://www.cgal.org/>.
We propose to determine the correction of the significance level after multiple coding of an explanatory variable in Generalized Linear Model. The different methods of correction of the p-value are the Single step Bonferroni procedure, and resampling based methods developed by P.H.Westfall in 1993. Resampling methods are based on the permutation and the parametric bootstrap procedure. If some continuous, and dichotomous transformations are performed this package offers an exact correction of the p-value developed by B.Liquet & D.Commenges in 2005. The naive method with no correction is also available.
This package provides a collection of data sets for teaching cluster analysis.
Analyzes spatial transcriptomic data using cells-by-genes and cell location matrices to find gene pairs that coordinate their expression between spatially adjacent cells. It enables quantitative analysis and graphical assessment of these cross-expression patterns. See Sarwar et al. (2025) <doi:10.1101/2024.09.17.613579> and <https://github.com/gillislab/CrossExpression/> for more details.
This package provides a wrapper for the CDRC API that returns data frames or sf of CDRC data. The API web reference is:<https://api.cdrc.ac.uk/swagger/index.html>.
Decorate functions to make them return enhanced output. The enhanced output consists in an object of type chronicle containing the result of the function applied to its arguments, as well as a log detailing when the function was run, what were its inputs, what were the errors (if the function failed to run) and other useful information. Tools to handle decorated functions are included, such as a forward pipe operator that makes chaining decorated functions possible.
Composite Kernel Machine Regression based on Likelihood Ratio Test (CKLRT): in this package, we develop a kernel machine regression framework to model the overall genetic effect of a SNP-set, considering the possible GE interaction. Specifically, we use a composite kernel to specify the overall genetic effect via a nonparametric function and we model additional covariates parametrically within the regression framework. The composite kernel is constructed as a weighted average of two kernels, one corresponding to the genetic main effect and one corresponding to the GE interaction effect. We propose a likelihood ratio test (LRT) and a restricted likelihood ratio test (RLRT) for statistical significance. We derive a Monte Carlo approach for the finite sample distributions of LRT and RLRT statistics. (N. Zhao, H. Zhang, J. Clark, A. Maity, M. Wu. Composite Kernel Machine Regression based on Likelihood Ratio Test with Application for Combined Genetic and Gene-environment Interaction Effect (Submitted).).
C5.0 decision trees and rule-based models for pattern recognition that extend the work of Quinlan (1993, ISBN:1-55860-238-0).
This package provides a cascade select widget for usage in Shiny applications. This is useful for selection of hierarchical choices (e.g. continent, country, city). It is taken from the JavaScript library PrimeReact'.
This package provides methods and data for color science - color conversions by observer, illuminant, and gamma. Color matching functions and chromaticity diagrams. Color indices, color differences, and spectral data conversion/analysis. This package is deprecated and will someday be removed; for reasons and details please see the README file.
Hierarchical and partitioning algorithms to cluster blocks of variables. The partitioning algorithm includes an option called noise cluster to set aside atypical blocks of variables. Different thresholds per cluster can be sets. The CLUSTATIS method (for quantitative blocks) (Llobell, Cariou, Vigneau, Labenne & Qannari (2020) <doi:10.1016/j.foodqual.2018.05.013>, Llobell, Vigneau & Qannari (2019) <doi:10.1016/j.foodqual.2019.02.017>) and the CLUSCATA method (for Check-All-That-Apply data) (Llobell, Cariou, Vigneau, Labenne & Qannari (2019) <doi:10.1016/j.foodqual.2018.09.006>, Llobell, Giacalone, Labenne & Qannari (2019) <doi:10.1016/j.foodqual.2019.05.017>) are the core of this package. The CATATIS methods allows to compute some indices and tests to control the quality of CATA data. Multivariate analysis and clustering of subjects for quantitative multiblock data, CATA, RATA, Free Sorting and JAR experiments are available. Clustering of rows in multi-block context (notably with ClusMB strategy) is also included.
This package provides functions for calculating the conditional power for different models in survival time analysis within randomized clinical trials with two different treatments to be compared and survival as an endpoint.
This package provides functionality for the analysis of clustered data using the cluster bootstrap.
Cure dependent censoring regression models for long-term survival multivariate data. These models are based on extensions of the frailty models, capable to accommodating the cure fraction and the dependence between failure and censoring times, with Weibull and piecewise exponential marginal distributions. Theoretical details regarding the models implemented in the package can be found in Schneider et al. (2022) <doi:10.1007/s10651-022-00549-0>.
This package provides a set of fast tools for converting a textual corpus into a set of normalized tables. Users may make use of the udpipe back end with no external dependencies, or a Python back ends with spaCy <https://spacy.io>. Exposed annotation tasks include tokenization, part of speech tagging, named entity recognition, and dependency parsing.
Use C++ Standard Template Library containers interactively in R. Includes sets, unordered sets, multisets, unordered multisets, maps, unordered maps, multimaps, unordered multimaps, stacks, queues, priority queues, vectors, deques, forward lists, and lists.
This package provides functions to produce some circular plots for circular data, in a height- or area-proportional manner. They include bar plots, smooth density plots, stacked dot plots, histograms, multi-class stacked smooth density plots, and multi-class stacked histograms.