Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Statistical tools for the Mallows-Binomial model, the first joint statistical model for preference learning for rankings and ratings. This project was supported by the National Science Foundation under Grant No. 2019901.
Includes algorithms to facilitate the assessment of extinction risk of species according to the IUCN (International Union for Conservation of Nature, see <https://iucn.org/> for more information) red list criteria.
An R interface to the typeform <https://www.typeform.com/> application program interface. Also provides functions for downloading your results.
This package provides functions for reading data sets in different formats for testing machine learning tools are provided. This allows to run a loop over several data sets in their original form, for example if they are downloaded from UCI Machine Learning Repository. The data are not part of the package and have to be downloaded separately.
TiddlyWiki is a unique non-linear notebook for capturing, organising and sharing complex information. rtiddlywiki is a R interface of TiddlyWiki <https://tiddlywiki.com> to create new tiddler from R Markdown file, and then put into a local TiddlyWiki server if it is available.
This package provides a novel numerical algorithm that provides functionality for estimating the exact 95% confidence interval of the location parameter in the random effects model, and is much faster than the naive method. Works best when the number of studies is between 6-20.
Utilities for sparse signal recovery suitable for compressed sensing. L1, L2 and TV penalties, DFT basis matrix, simple sparse signal generator, mutual cumulative coherence between two matrices and examples, Lp complex norm, scaling back regression coefficients.
This package provides a pure R implementation of the median cut algorithm. Extracts the dominant colors from an image, and turns them into a scale for use in plots or for fun!
Rolling Window Multiple Correlation ('RolWinMulCor') estimates the rolling (running) window correlation for the bi- and multi-variate cases between regular (sampled on identical time points) time series, with especial emphasis to ecological data although this can be applied to other kinds of data sets. RolWinMulCor is based on the concept of rolling, running or sliding window and is useful to evaluate the evolution of correlation through time and time-scales. RolWinMulCor contains six functions. The first two focus on the bi-variate case: (1) rolwincor_1win() and (2) rolwincor_heatmap(), which estimate the correlation coefficients and the their respective p-values for only one window-length (time-scale) and considering all possible window-lengths or a band of window-lengths, respectively. The second two functions: (3) rolwinmulcor_1win() and (4) rolwinmulcor_heatmap() are designed to analyze the multi-variate case, following the bi-variate case to visually display the results, but these two approaches are methodologically different. That is, the multi-variate case estimates the adjusted coefficients of determination instead of the correlation coefficients. The last two functions: (5) plot_1win() and (6) plot_heatmap() are used to represent graphically the outputs of the four aforementioned functions as simple plots or as heat maps. The functions contained in RolWinMulCor are highly flexible since these contains several parameters to control the estimation of correlation and the features of the plot output, e.g. to remove the (linear) trend contained in the time series under analysis, to choose different p-value correction methods (which are used to address the multiple comparison problem) or to personalise the plot outputs. The RolWinMulCor package also provides examples with synthetic and real-life ecological time series to exemplify its use. Methods derived from H. Abdi. (2007) <https://personal.utdallas.edu/~herve/Abdi-MCC2007-pretty.pdf>, R. Telford (2013) <https://quantpalaeo.wordpress.com/2013/01/04/, J. M. Polanco-Martinez (2019) <doi:10.1007/s11071-019-04974-y>, and J. M. Polanco-Martinez (2020) <doi:10.1016/j.ecoinf.2020.101163>.
Allows users to easily create references to R objects then dereference when needed or modify in place without using reference classes, environments, or active bindings as workarounds. Users can also create expression references that allow subsets of any object to be referenced or expressions containing references to multiple objects.
Set of functions for Regression Discontinuity Design ('RDD'), for data visualisation, estimation and testing.
PADRINO houses textual representations of Integral Projection Models which can be converted from their table format into full kernels to reproduce or extend an already published analysis. Rpadrino is an R interface to this database. For more information on Integral Projection Models, see Easterling et al. (2000) <doi:10.1890/0012-9658(2000)081[0694:SSSAAN]2.0.CO;2>, Merow et al. (2013) <doi:10.1111/2041-210X.12146>, Rees et al. (2014) <doi:10.1111/1365-2656.12178>, and Metcalf et al. (2015) <doi:10.1111/2041-210X.12405>. See Levin et al. (2021) for more information on ipmr', the engine that powers model reconstruction <doi:10.1111/2041-210X.13683>.
Density discontinuity testing (a.k.a. manipulation testing) is commonly employed in regression discontinuity designs and other program evaluation settings to detect perfect self-selection (manipulation) around a cutoff where treatment/policy assignment changes. This package implements manipulation testing procedures using the local polynomial density estimators: rddensity() to construct test statistics and p-values given a prespecified cutoff, rdbwdensity() to perform data-driven bandwidth selection, and rdplotdensity() to construct density plots.
The Refugee Population Statistics Database published by The Office of The United Nations High Commissioner for Refugees (UNHCR) contains information about forcibly displaced populations spanning more than 70 years of statistical activities. It covers displaced populations such as refugees, asylum-seekers and internally displaced people, including their demographics. Stateless people are also included, most of who have never been displaced. The database also reflects the different types of solutions for displaced populations such as repatriation or resettlement. More information on the data and methodology can be found on the UNHCR Refugee Data Finder <https://www.unhcr.org/refugee-statistics/>.
This package provides functions for risk management and portfolio investment of securities with practical tools for data processing and plotting. Moreover, it contains functions which perform the COS Method, an option pricing method based on the Fourier-cosine series (Fang, F. (2008) <doi:10.1137/080718061>).
Generates a project and repo for easy initialization of a GitHub repo for R workshops. The repo includes a README with instructions to ensure that all users have the needed packages, an RStudio project with the right directories and the proper data. The repo can then be used for hosting code taught during the workshop.
This package performs robust estimation and inference when using covariate adjustment and/or covariate-adaptive randomization in randomized clinical trials. Ting Ye, Jun Shao, Yanyao Yi, Qinyuan Zhao (2023) <doi:10.1080/01621459.2022.2049278>. Ting Ye, Marlena Bannick, Yanyao Yi, Jun Shao (2023) <doi:10.1080/24754269.2023.2205802>. Ting Ye, Jun Shao, Yanyao Yi (2023) <doi:10.1093/biomet/asad045>. Marlena Bannick, Jun Shao, Jingyi Liu, Yu Du, Yanyao Yi, Ting Ye (2024) <doi:10.1093/biomet/asaf029>. Xiaoyu Qiu, Yuhan Qian, Jaehwan Yi, Jinqiu Wang, Yu Du, Yanyao Yi, Ting Ye (2025) <doi:10.48550/arXiv.2408.12541>.
R access to the Sequential Monte Carlo Template Classes by Johansen <doi:10.18637/jss.v030.i06> is provided. At present, four additional examples have been added, and the first example from the JSS paper has been extended. Further integration and extensions are planned.
Easily compute an aggregate ranking (also called a median ranking or a consensus ranking) according to the axiomatic approach presented by Cook et al. (2007). This approach minimises the number of violations between all candidate consensus rankings and all input (partial) rankings, and draws on a branch and bound algorithm and a heuristic algorithm to drastically improve speed. The package also provides an option to bootstrap a consensus ranking based on resampling input rankings (with replacement). Input rankings can be either incomplete (partial) or complete. Reference: Cook, W.D., Golany, B., Penn, M. and Raviv, T. (2007) <doi:10.1016/j.cor.2005.05.030>.
Use trend filtering, a type of regularized nonparametric regression, to estimate the instantaneous reproduction number, also called Rt. This value roughly says how many new infections will result from each new infection today. Values larger than 1 indicate that an epidemic is growing while those less than 1 indicate decline. For more details about this methodology, see Liu, Cai, Gustafson, and McDonald (2024) <doi:10.1371/journal.pcbi.1012324>.
The header-only modern C++ template library Magic Enum for static reflection of enums (to string, from string, iteration) is provided by this package. More information about the underlying library can be found at its repository at <https://github.com/Neargye/magic_enum>.
This package provides robust parameter tuning and model training for predictive models applied across data sources where the data distribution varies slightly from source to source. This package implements three primary tuning methods: cross-validation-based internal tuning, external tuning, and the RobustTuneC method. External tuning includes a conservative option where parameters are tuned internally on the training data and validating on an external dataset, providing a slightly pessimistic estimate. It supports Lasso, Ridge, Random Forest, Boosting, and Support Vector Machine classifiers. Currently, only binary classification is supported. The response variable must be the first column of the dataset and a factor with exactly two levels. The tuning methods are based on the paper by Nicole Ellenbach, Anne-Laure Boulesteix, Bernd Bischl, Kristian Unger, and Roman Hornung (2021) "Improved Outcome Prediction Across Data Sources Through Robust Parameter Tuning" <doi:10.1007/s00357-020-09368-z>.
Implementation of the relative placement algorithm widely used in the scoring of Lindy Hop and West Coast Swing dance contests.
We provide a number of algorithms to estimate fundamental statistics including Fréchet mean and geometric median for manifold-valued data. Also, C++ header files are contained that implement elementary operations on manifolds such as Sphere, Grassmann, and others. See Bhattacharya and Bhattacharya (2012) <doi:10.1017/CBO9781139094764> if you are interested in statistics on manifolds, and Absil et al (2007, ISBN:9780691132983) on computational aspects of optimization on matrix manifolds.