Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Process open standard GPX files into data.frames for further use and analysis in R.
This package provides an interface to the GeoNode API, allowing to upload and publish metadata and data in GeoNode'. For more information about the GeoNode API, see <https://geonode.org/>.
This package implements a variant of the Self-Organizing Map (SOM) algorithm designed for mixed-attribute datasets. Similarity between observations is computed using the Gower distance, and categorical prototypes are updated via heuristic strategies (weighted mode and multinomial sampling). Provides functions for model fitting, mapping, visualization (U-Matrix and component planes), and evaluation, making SOM applicable to heterogeneous real-world data. For methodological details see Sáez and Salas (2026) <doi:10.1007/s41060-025-00941-6>.
This package provides specialized visualization tools for Single-Case Experimental Design (SCED) research using ggplot2'. SCED studies are a crucial methodology in behavioral and educational research where individual participants serve as their own controls through carefully designed experimental phases. This package extends ggplot2 to create publication-ready graphics with professional phase change lines, support for multiple baseline designs, and styling functions that follow SCED visualization conventions. Key functions include adding phase change demarcation lines to existing plots and formatting axes with broken axis appearance commonly used in single-case research.
OpenAI Gym is a open-source Python toolkit for developing and comparing reinforcement learning algorithms. This is a wrapper for the OpenAI Gym API, and enables access to an ever-growing variety of environments. For more details on OpenAI Gym, please see here: <https://github.com/openai/gym>. For more details on the OpenAI Gym API specification, please see here: <https://github.com/openai/gym-http-api>.
This package provides a collection of I/O tools for handling the most commonly used genomic datafiles, like fasta/-q, bed, gff, gtf, ped/map and vcf.
Identify and visualize individuals with unusual association patterns of genetics and geography using the approach of Chang and Schmid (2023) <doi:10.1101/2023.04.06.535838>. It detects potential outliers that violate the isolation-by-distance assumption using the K-nearest neighbor approach. You can obtain a table of outliers with statistics and visualize unusual geo-genetic patterns on a geographical map. This is useful for landscape genomics studies to discover individuals with unusual geography and genetics associations from a large biological sample.
Extend ggplot2 facets to panel layouts arranged in a grid with ragged edges. facet_ragged_rows() groups panels into rows that can vary in length, facet_ragged_cols() does the same but for columns. These can be useful, for example, to represent nested or partially crossed relationships between faceting variables.
Fits the logistic equation to microbial growth curve data (e.g., repeated absorbance measurements taken from a plate reader over time). From this fit, a variety of metrics are provided, including the maximum growth rate, the doubling time, the carrying capacity, the area under the logistic curve, and the time to the inflection point. Method described in Sprouffske and Wagner (2016) <doi:10.1186/s12859-016-1016-7>.
Extract and reform data from GWAS (genome-wide association study) results, and then make a single integrated forest plot containing multiple windows of which each shows the result of individual SNPs (or other items of interest).
This package provides functions to estimate model parameters and forecast future volatilities using the Unified GARCH-Ito [Kim and Wang (2016) <doi:10.1016/j.jeconom.2016.05.003>] and Realized GARCH-Ito [Song et. al. (2020) <doi:10.1016/j.jeconom.2020.07.007>] models. Optimization is done using augmented Lagrange multiplier method.
An R package that allows for combining tree-boosting with Gaussian process and mixed effects models. It also allows for independently doing tree-boosting as well as inference and prediction for Gaussian process and mixed effects models. See <https://github.com/fabsig/GPBoost> for more information on the software and Sigrist (2022, JMLR) <https://www.jmlr.org/papers/v23/20-322.html> and Sigrist (2023, TPAMI) <doi:10.1109/TPAMI.2022.3168152> for more information on the methodology.
This package provides a collection of functions for processing Gen5 2.06 exported data. Gen5 is an essential data analysis software for BioTek plate readers <https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/>. This package contains functions for data cleaning, modeling and plotting using exported data from Gen5 version 2.06. It exports technically correct data defined in (Edwin de Jonge and Mark van der Loo (2013) <https://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf>) for customized analysis. It contains Boltzmann fitting for general kinetic analysis. See <https://www.github.com/yanxianUCSB/gen5helper> for more information, documentation and examples.
This package provides statistical methods to check if a parametric family of conditional density functions fits to some given dataset of covariates and response variables. Different test statistics can be used to determine the goodness-of-fit of the assumed model, see Andrews (1997) <doi:10.2307/2171880>, Bierens & Wang (2012) <doi:10.1017/S0266466611000168>, Dikta & Scheer (2021) <doi:10.1007/978-3-030-73480-0> and Kremling & Dikta (2024) <doi:10.48550/arXiv.2409.20262>. As proposed in these papers, the corresponding p-values are approximated using a parametric bootstrap method.
This package provides a collection of custom ggplot2'-based visualizations for data exploration and analysis. Each function handles data preprocessing and returns a object that can be further customized using standard ggplot2 syntax.
Interface for extra high-dimensional smooth functions for Generalized Additive Models for Location Scale and Shape (GAMLSS) including (adaptive) lasso, ridge, elastic net and least angle regression.
This package provides ggplot2 geoms that allow groups of data points to be outlined or highlighted for emphasis. This is particularly useful when working with dense datasets that are prone to overplotting.
Estimation, model selection and other aspects of statistical inference in Graphical Gaussian models with edge and vertex symmetries (Graphical Gaussian models with colours). Documentation about gRc is provided in the paper by Hojsgaard and Lauritzen (2007, <doi:10.18637/jss.v023.i06>) and the paper by Hojsgaard and Lauritzen (2008, <doi:10.1111/j.1467-9868.2008.00666.x>).
Download and process public domain works in the Project Gutenberg collection <https://www.gutenberg.org/>. Includes metadata for all Project Gutenberg works, so that they can be searched and retrieved.
Stores small spatial datasets used to teach basic spatial analysis concepts. Datasets are based off of the GeoDa software workbook and data site <https://geodacenter.github.io/data-and-lab/> developed by Luc Anselin and team at the University of Chicago. Datasets are stored as sf objects.
Simplifies the creation, management, and updating of local databases using data extracted from Google Earth Engine ('GEE'). It integrates with GEE to store, aggregate, and process spatio-temporal data, leveraging SQLite for efficient, serverless storage. The geeLite package provides utilities for data transformation and supports real-time monitoring and analysis of geospatial features, making it suitable for researchers and practitioners in geospatial science. For details, see Kurbucz and Andrée (2025) "Building and Managing Local Databases from Google Earth Engine with the geeLite R Package" <https://hdl.handle.net/10986/43165>.
GWAS R API Data Download. This package provides easy access to the NHGRI'-'EBI GWAS Catalog data by accessing the REST API <https://www.ebi.ac.uk/gwas/rest/docs/api/>.
The genetic algorithm can be used directly to find the similarity of users and more effectively to increase the efficiency of the collaborative filtering method. By identifying the nearest neighbors to the active user, before the genetic algorithm, and by identifying suitable starting points, an effective method for user-based collaborative filtering method has been developed. This package uses an optimization algorithm (continuous genetic algorithm) to directly find the optimal similarities between active users (users for whom current recommendations are made) and others. First, by determining the nearest neighbor and their number, the number of genes in a chromosome is determined. Each gene represents the neighbor's similarity to the active user. By estimating the starting points of the genetic algorithm, it quickly converges to the optimal solutions. The positive point is the independence of the genetic algorithm on the number of data that for big data is an effective help in solving the problem.
Encodes simple feature ('sf') objects and coordinates, and decodes polylines using the Google polyline encoding algorithm (<https://developers.google.com/maps/documentation/utilities/polylinealgorithm>).