Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Filters animal satellite tracking data obtained from the Argos system(<https://www.argos-system.org/>), following the algorithm described in Freitas et al (2008) <doi:10.1111/j.1748-7692.2007.00180.x>. It is especially indicated for telemetry studies of marine animals, where Argos locations are predominantly of low-quality.
Estimates the attributable fraction in different sampling designs adjusted for measured confounders using logistic regression (cross-sectional and case-control designs), conditional logistic regression (matched case-control design), Cox proportional hazard regression (cohort design with time-to- event outcome), gamma-frailty model with a Weibull baseline hazard and instrumental variables analysis. An exploration of the AF with a genetic exposure can be found in the package AFheritability Dahlqwist E et al. (2019) <doi:10.1007/s00439-019-02006-8>.
Accumulated Local Effects (ALE) were initially developed as a model-agnostic approach for global explanations of the results of black-box machine learning algorithms. ALE has a key advantage over other approaches like partial dependency plots (PDP) and SHapley Additive exPlanations (SHAP): its values represent a clean functional decomposition of the model. As such, ALE values are not affected by the presence or absence of interactions among variables in a mode. Moreover, its computation is relatively rapid. This package reimplements the algorithms for calculating ALE data and develops highly interpretable visualizations for plotting these ALE values. It also extends the original ALE concept to add bootstrap-based confidence intervals and ALE-based statistics that can be used for statistical inference. For more details, see Okoli, Chitu. 2023. â Statistical Inference Using Machine Learning and Classical Techniques Based on Accumulated Local Effects (ALE).â arXiv. <doi:10.48550/arXiv.2310.09877>.
This package provides functions in this package fit a stratified Cox proportional hazards and a proportional subdistribution hazards model by extending Zhang et al., (2007) <doi: 10.1016/j.cmpb.2007.07.010> and Zhang et al., (2011) <doi: 10.1016/j.cmpb.2010.07.005> respectively to clustered right-censored data. The functions also provide the estimates of the cumulative baseline hazard along with their standard errors. Furthermore, the adjusted survival and cumulative incidence probabilities are also provided along with their standard errors. Finally, the estimate of cumulative incidence and survival probabilities given a vector of covariates along with their standard errors are also provided.
An implementation of the Aligned Rank Transform technique for factorial analysis (see references below for details) including models with missing terms (unsaturated factorial models). The function first computes a separate aligned ranked response variable for each effect of the user-specified model, and then runs a classic ANOVA on each of the aligned ranked responses. For further details, see Higgins, J. J. and Tashtoush, S. (1994). An aligned rank transform test for interaction. Nonlinear World 1 (2), pp. 201-211. Wobbrock, J.O., Findlater, L., Gergle, D. and Higgins,J.J. (2011). The Aligned Rank Transform for nonparametric factorial analyses using only ANOVA procedures. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI 11). New York: ACM Press, pp. 143-146. <doi:10.1145/1978942.1978963>.
Statistical analysis of archaeological dates and groups of dates. This package allows to post-process Markov Chain Monte Carlo (MCMC) simulations from ChronoModel <https://chronomodel.com/>, Oxcal <https://c14.arch.ox.ac.uk/oxcal.html> or BCal <https://bcal.shef.ac.uk/>. It provides functions for the study of rhythms of the long term from the posterior distribution of a series of dates (tempo and activity plot). It also allows the estimation and visualization of time ranges from the posterior distribution of groups of dates (e.g. duration, transition and hiatus between successive phases) as described in Philippe and Vibet (2020) <doi:10.18637/jss.v093.c01>.
Processes noble gas mass spectrometer data to determine the isotopic composition of argon (comprised of Ar36, Ar37, Ar38, Ar39 and Ar40) released from neutron-irradiated potassium-bearing minerals. Then uses these compositions to calculate precise and accurate geochronological ages for multiple samples as well as the covariances between them. Error propagation is done in matrix form, which jointly treats all samples and all isotopes simultaneously at every step of the data reduction process. Includes methods for regression of the time-resolved mass spectrometer signals to t=0 ('time zero') for both single- and multi-collector instruments, blank correction, mass fractionation correction, detector intercalibration, decay corrections, interference corrections, interpolation of the irradiation parameter between neutron fluence monitors, and (weighted mean) age calculation. All operations are performed on the logs of the ratios between the different argon isotopes so as to properly treat them as compositional data', sensu Aitchison [1986, The Statistics of Compositional Data, Chapman and Hall].
This package provides a novel interpretable machine learning-based framework to automate the development of a clinical scoring model for predefined outcomes. Our novel framework consists of six modules: variable ranking with machine learning, variable transformation, score derivation, model selection, domain knowledge-based score fine-tuning, and performance evaluation.The details are described in our research paper<doi:10.2196/21798>. Users or clinicians could seamlessly generate parsimonious sparse-score risk models (i.e., risk scores), which can be easily implemented and validated in clinical practice. We hope to see its application in various medical case studies.
This package provides a comprehensive system for selecting variables and weighting data to match the specifications of the American National Election Studies. The package includes methods for identifying discrepant variables, raking data, and assessing the effects of the raking algorithm. It also allows automated re-raking if target variables fall outside identified bounds and allows greater user specification than other available raking algorithms. A variety of simple weighted statistics that were previously in this package (version .55 and earlier) have been moved to the package weights.'.
In panel data settings, specifies set of candidate models, fits them to data from pre-treatment validation periods, and selects model as average over candidate models, weighting each by posterior probability of being most robust given its differential average prediction errors in pre-treatment validation periods. Subsequent estimation and inference of causal effect's bounds accounts for both model and sampling uncertainty, and calculates the robustness changepoint value at which bounds go from excluding to including 0. The package also includes a range of diagnostic plots, such as those illustrating models differential average prediction errors and the posterior distribution of which model is most robust.
This package provides tools to simulate alphanumeric alleles, impute genetic missing data and reconstruct non-recombinant haplotypes from pedigree databases in a deterministic way. Allelic simulations can be implemented taking into account many factors (such as number of families, markers, alleles per marker, probability and proportion of missing genotypes, recombination rate, etc). Genotype imputation can be used with simulated datasets or real databases (previously loaded in .ped format). Haplotype reconstruction can be carried out even with missing data, since the program firstly imputes each family genotype (without a reference panel), to later reconstruct the corresponding haplotypes for each family member. All this considering that each individual (due to meiosis) should unequivocally have two alleles per marker (one inherited from each parent) and thus imputation and reconstruction results can be deterministically calculated.
Forced-choice (FC) response has gained increasing popularity and interest for its resistance to faking when well-designed (Cao & Drasgow, 2019 <doi:10.1037/apl0000414>). To established well-designed FC scales, typically each item within a block should measure different trait and have similar level of social desirability (Zhang et al., 2020 <doi:10.1177/1094428119836486>). Recent study also suggests the importance of high inter-item agreement of social desirability between items within a block (Pavlov et al., 2021 <doi:10.31234/osf.io/hmnrc>). In addition to this, FC developers may also need to maximize factor loading differences (Brown & Maydeu-Olivares, 2011 <doi:10.1177/0013164410375112>) or minimize item location differences (Cao & Drasgow, 2019 <doi:10.1037/apl0000414>) depending on scoring models. Decision of which items should be assigned to the same block, termed item pairing, is thus critical to the quality of an FC test. This pairing process is essentially an optimization process which is currently carried out manually. However, given that we often need to simultaneously meet multiple objectives, manual pairing becomes impractical or even not feasible once the number of latent traits and/or number of items per trait are relatively large. To address these problems, autoFC is developed as a practical tool for facilitating the automatic construction of FC tests (Li et al., 2022 <doi:10.1177/01466216211051726>), essentially exempting users from the burden of manual item pairing and reducing the computational costs and biases induced by simple ranking methods. Given characteristics of each item (and item responses), FC measures can be constructed either automatically based on user-defined pairing criteria and weights, or based on exact specifications of each block (i.e., blueprint; see Li et al., 2024 <doi:10.1177/10944281241229784>). Users can also generate simulated responses based on the Thurstonian Item Response Theory model (Brown & Maydeu-Olivares, 2011 <doi:10.1177/0013164410375112>) and predict trait scores of simulated/actual respondents based on an estimated model.
Advanced sports performance analysis and modeling for activity data retrieved from Strava'. This package focuses on applying established sports science models and statistical methods to gain deeper insights into training load, performance prediction, recovery status, and identifying key performance factors, extending basic data analysis capabilities.
Exploration of Weather Research & Forecasting ('WRF') Model data of Servicio Meteorologico Nacional (SMN) from Amazon Web Services (<https://registry.opendata.aws/smn-ar-wrf-dataset/>) cloud. The package provides the possibility of data downloading, processing and correction methods. It also has map management and series exploration of available meteorological variables of WRF forecast.
This package provides WHO Child Growth Standards (z-scores) with confidence intervals and standard errors around the prevalence estimates, taking into account complex sample designs. More information on the methods is available online: <https://www.who.int/tools/child-growth-standards>.
Build and control interactive 2D and 3D maps with R/Shiny'. Lean set of powerful commands wrapping native calls to AMap <https://lbs.amap.com/api/jsapi-v2/summary/>. Deliver rich mapping functionality with minimal overhead.
An implementation of the additive heredity model for the mixture-of-mixtures experiments of Shen et al. (2019) in Technometrics <doi:10.1080/00401706.2019.1630010>. The additive heredity model considers an additive structure to inherently connect the major components with the minor components. The additive heredity model has a meaningful interpretation for the estimated model because of the hierarchical and heredity principles applied and the nonnegative garrote technique used for variable selection.
This package provides basic functionalities to calculate the position of satellites given a known state vector. The package includes implementations of the SGP4 and SDP4 simplified perturbation models to propagate orbital state vectors, as well as utilities to read TLE files and convert coordinates between different frames of reference. Several of the functionalities of the package (including the high-precision numerical orbit propagator) require the coefficients and data included in the asteRiskData package, available in a drat repository. To install this data package, run install.packages("asteRiskData", repos="https://rafael-ayala.github.io/drat/")'. Felix R. Hoots, Ronald L. Roehrich and T.S. Kelso (1988) <https://celestrak.org/NORAD/documentation/spacetrk.pdf>. David Vallado, Paul Crawford, Richard Hujsak and T.S. Kelso (2012) <doi:10.2514/6.2006-6753>. Felix R. Hoots, Paul W. Schumacher Jr. and Robert A. Glover (2014) <doi:10.2514/1.9161>.
This package provides a few functions and several data set for the Springer book Applied Predictive Modeling'.
Optimize one or two-arm, two-stage designs for clinical trials with respect to several implemented objective criteria or custom objectives. Optimization under uncertainty and conditional (given stage-one outcome) constraints are supported. See Pilz et al. (2019) <doi:10.1002/sim.8291> and Kunzmann et al. (2021) <doi:10.18637/jss.v098.i09> for details.
This package provides a (mildly) opinionated set of functions to help assess medication adherence for researchers working with medication claims data. Medication adherence analyses have several complex steps that are often convoluted and can be time-intensive. The focus is to create a set of functions using "tidy principles" geared towards transparency, speed, and flexibility while working with adherence metrics. All functions perform exactly one task with an intuitive name so that a researcher can handle details (often achieved with vectorized solutions) while we handle non-vectorized tasks common to most adherence calculations such as adjusting fill dates and determining episodes of care. The methodologies in referenced in this package come from Canfield SL, et al (2019) "Navigating the Wild West of Medication Adherence Reporting in Specialty Pharmacy" <doi:10.18553/jmcp.2019.25.10.1073>.
This package performs Bayesian prediction of complex computer codes when fast approximations are available. It uses a hierarchical version of the Gaussian process, originally proposed by Kennedy and O'Hagan (2000), Biometrika 87(1):1.
This package provides a collection of tools for the analysis of animal movements.
This package provides a pipeable, transparent implementation of areal weighted interpolation with support for interpolating multiple variables in a single function call. These tools provide a full-featured workflow for validation and estimation that fits into both modern data management (e.g. tidyverse) and spatial data (e.g. sf) frameworks.