Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An implementation that combines trait data and a phylogenetic tree (or trees) into a single object of class treedata.table'. The resulting object can be easily manipulated to simultaneously change the trait- and tree-level sampling. Currently implemented functions allow users to use a data.table syntax when performing operations on the trait dataset within the treedata.table object. For more details see Roman-Palacios et al. (2021) <doi:10.7717/peerj.12450>.
Helps the R users to get data from Tushare Pro'<https://tushare.pro>. Tushare Pro is a platform as well as a community with a lot of staffs working in financial area. We support financial data such as stock price, financial report statements and digital coins data.
Type hints are special comments within a function body indicating the intended nature of the function's arguments in terms of data types, dimensions and permitted values. The actual parameters with which the function is called are evaluated against these type hint comments at run-time.
This package provides utilities to create and use lenses to simplify data manipulation. Lenses are composable getter/setter pairs that provide a functional approach to manipulating deeply nested data structures, e.g., elements within list columns in data frames. The implementation is based on the earlier lenses R package <https://github.com/cfhammill/lenses>, which was inspired by the Haskell lens package by Kmett (2012) <https://github.com/ekmett/lens>, one of the most widely referenced implementations of lenses. For additional background and history on the theory of lenses, see the lens package wiki: <https://github.com/ekmett/lens/wiki/History-of-Lenses>.
This package provides tools to work with template code and text in R. It aims to provide a simple substitution mechanism for R-expressions inside these templates. Templates can be written in other languages like SQL', can simply be represented by characters in R, or can themselves be R-expressions or functions.
This package performs maximum likelihood based estimation and inference on time to event data, possibly subject to non-informative right censoring. FitParaSurv() provides maximum likelihood estimates of model parameters and distributional characteristics, including the mean, median, variance, and restricted mean. CompParaSurv() compares the mean, median, and restricted mean survival experiences of two treatment groups. Candidate distributions include the exponential, gamma, generalized gamma, log-normal, and Weibull.
Interactive laboratory of Time Series based in Box-Jenkins methodology.
Schedule R scripts/processes with the Windows task scheduler. This allows R users to automate R processes on specific time points from R itself.
This package provides a collection of functions for generating frequency tables and cross-tabulations of categorical variables. The resulting tables can be exported to various formats (Excel, PDF, HTML, etc.) with extensive formatting and layout customization options.
Fits temperature response models to rate measurements taken at different temperatures. Etienne Low-Decarie,Tobias G. Boatman, Noah Bennett,Will Passfield,Antonio Gavalas-Olea,Philipp Siegel, Richard J. Geider (2017) <doi:10.1002/ece3.3576> .
Uses the Distorted Wave Born Approximation (DWBA) to compute the acoustic backward scattering, the geometry of the object is formed by a volumetric mesh, composed of tetrahedrons. This computation is done efficiently through an analytical 3D integration that allows for a solution which is expressed in terms of elementary functions for each tetrahedron. It is important to note that this method is only valid for objects whose acoustic properties, such as density and sound speed, do not vary significantly compared to the surrounding medium. (See Lavia, Cascallares and Gonzalez, J. D. (2023). TetraScatt model: Born approximation for the estimation of acoustic dispersion of fluid-like objects of arbitrary geometries. arXiv preprint <arXiv:2312.16721>).
Snapshots for unit tests using the tinytest framework for R. Includes expectations to test base R and ggplot2 plots as well as console output from print().
Simplifies access to Tunisian government open data from <https://data.gov.tn/fr/>. Queries datasets by theme, author, or keywords, retrieves metadata, and gets structured results ready for analysis; all through the official CKAN API.
Total variation denoising can be used to approximate a given sequence of noisy observations by a piecewise constant sequence, with adaptively-chosen break points. An efficient linear-time algorithm for total variation denoising is provided here, based on Johnson (2013) <doi:10.1080/10618600.2012.681238>.
Tidy standardized mean differences ('SMDs'). tidysmd uses the smd package to calculate standardized mean differences for variables in a data frame, returning the results in a tidy format.
TEMPoral TEnsor Decomposition (TEMPTED), is a dimension reduction method for multivariate longitudinal data with varying temporal sampling. It formats the data into a temporal tensor and decomposes it into a summation of low-dimensional components, each consisting of a subject loading vector, a feature loading vector, and a continuous temporal loading function. These loadings provide a low-dimensional representation of subjects or samples and can be used to identify features associated with clusters of subjects or samples. TEMPTED provides the flexibility of allowing subjects to have different temporal sampling, so time points do not need to be binned, and missing time points do not need to be imputed.
Improves the predictive performance of ridge and lasso regression exploiting one or more sources of prior information on the importance and direction of effects (Rauschenberger and others 2023, <doi:10.1093/bioinformatics/btad680>). For running the vignette (optional), install fwelnet and ecpc from <https://github.com/kjytay/fwelnet> and <https://github.com/Mirrelijn/ecpc>, respectively.
Routines for the analysis of nonlinear time series. This work is largely inspired by the TISEAN project, by Rainer Hegger, Holger Kantz and Thomas Schreiber: <http://www.mpipks-dresden.mpg.de/~tisean/>.
Compute the coordinates to produce a tendril plot. In the tendril plot, each tendril (branch) represents a type of events, and the direction of the tendril is dictated by on which treatment arm the event is occurring. If an event is occurring on the first of the two specified treatment arms, the tendril bends in a clockwise direction. If an event is occurring on the second of the treatment arms, the tendril bends in an anti-clockwise direction. Ref: Karpefors, M and Weatherall, J., "The Tendril Plot - a novel visual summary of the incidence, significance and temporal aspects of adverse events in clinical trials" - JAMIA 2018; 25(8): 1069-1073 <doi:10.1093/jamia/ocy016>.
Simple utilities to generate a Dockerfile from a directory or project, build the corresponding Docker image, push the image to DockerHub, and publicly share the project via Binder.
This package provides functions for compounding and discounting calculations included here serve as a complete reference for various scenarios of time value of money. Raymond M. Brooks (â Financial Management,â 2018, ISBN: 9780134730417). Sheridan Titman, Arthur J. Keown, John D. Martin (â Financial Management: Principles and Applications,â 2017, ISBN: 9780134417219). Jonathan Berk, Peter DeMarzo, David Stangeland, Andras Marosi (â Fundamentals of Corporate Finance,â 2019, ISBN: 9780134735313). S. A. Hummelbrunner, Kelly Halliday, Ali R. Hassanlou (â Contemporary Business Mathematics with Canadian Applications,â 2020, ISBN: 9780135285015).
This package provides tools for specifying time series regression models.
This package provides functions for visualizing networks with tmap'. It supports sfnetworks objects natively but is not limited to them. Useful for adding network layers such as edges and nodes to tmap maps. More features may be added in future versions.
Several statistical test functions as well as a function for exploratory data analysis to investigate classifiers allocating individuals to one of three disjoint and ordered classes. In a single classifier assessment the discriminatory power is compared to classification by chance. In a comparison of two classifiers the null hypothesis corresponds to equal discriminatory power of the two classifiers. See also "ROC Analysis for Classification and Prediction in Practice" by Nakas, Bantis and Gatsonis (2023), ISBN 9781482233704.