Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs copy number variants association analysis with Lasso and Weighted Fusion penalized regression. Creates a "CNV profile curve" to represent an individualâ s CNV events across a genomic region so to capture variations in CNV length and dosage. When evaluating association, the CNV profile curve is directly used as a predictor in the regression model, avoiding the need to predefine CNV loci. CNV profile regression estimates CNV effects at each genome position, making the results comparable across different studies. The penalization encourages sparsity in variable selection with a Lasso penalty and encourages effect smoothness between consecutive CNV events with a weighted fusion penalty, where the weight controls the level of smoothing between adjacent CNVs. For more details, see Si (2024) <doi:10.1101/2024.11.23.624994>.
Find the location of the code for an R package based on the package's name or string representation. Checks on CRAN based on information in the URL field or BioConductor and GitHub based on constructing a URL, and verifies all paths via testing for a successful response. This can be useful when automating static code analysis based on a list of package names, and similar tasks.
Perform likelihood estimation and corresponding analysis under the copula-based Markov chain model for serially dependent event times with a dependent terminal event. Available are statistical methods in Huang, Wang and Emura (2020, JJSD accepted).
Enumerate orientation-consistent directed networks from an undirected or partially directed skeleton, detect feedback loops, summarize topology, and simulate node dynamics via stochastic differential equations.
Determining the value of Stirling numbers of 1st kind and 2nd kind,references: Bóna,Miklós(2017,ISBN 9789813148840).
Compute covariate-adjusted specificity at controlled sensitivity level, or covariate-adjusted sensitivity at controlled specificity level, or covariate-adjust receiver operating characteristic curve, or covariate-adjusted thresholds at controlled sensitivity/specificity level. All statistics could also be computed for specific sub-populations given their covariate values. Methods are described in Ziyi Li, Yijian Huang, Datta Patil, Martin G. Sanda (2021+) "Covariate adjustment in continuous biomarker assessment".
Non-linear/linear hybrid method for batch-effect correction that uses Mutual Nearest Neighbors (MNNs) to identify similar cells between datasets. Reference: Loza M. et al. (NAR Genomics and Bioinformatics, 2020) <doi:10.1093/nargab/lqac022>.
Retrieve cancer screening data for cervical, breast and colorectal cancers from the Kenya Health Information System <https://hiskenya.org> in a consistent way.
Set of functions to import COVID-19 pandemic data into R. The Brazilian COVID-19 data, obtained from the official Brazilian repository at <https://covid.saude.gov.br/>, is available at the country, region, state, and city levels. The package also downloads world-level COVID-19 data from Johns Hopkins University's repository. COVID-19 data is available from the start of follow-up until to May 5, 2023, when the World Health Organization (WHO) declared an end to the Public Health Emergency of International Concern (PHEIC) for COVID-19.
This package provides a database of Chinese surnames and given names (1930-2008). This database contains nationwide frequency statistics of 1,806 Chinese surnames and 2,614 Chinese characters used in given names, covering about 1.2 billion Han Chinese population (96.8 percent of the Han Chinese household-registered population born from 1930 to 2008 and still alive in 2008). This package also contains a function for computing multiple indices of Chinese surnames and given names for social science research (e.g., name uniqueness, name gender, name valence, and name warmth/competence). Details are provided at <https://psychbruce.github.io/ChineseNames/>.
This package provides a method for determining groups in multiple curves with an automatic selection of their number based on k-means or k-medians algorithms. The selection of the optimal number is provided by bootstrap methods or other approaches with lower computational cost. The methodology can be applied both in regression and survival framework. Implemented methods are: Grouping multiple survival curves described by Villanueva et al. (2018) <doi:10.1002/sim.8016>.
Estimate sample sizes needed to capture target levels of genetic diversity from a population (multivariate allele frequencies) for applications like germplasm conservation and breeding efforts. Compares bootstrap samples to a full population using linear regression, employing the R-squared value to represent the proportion of diversity captured. Iteratively increases sample size until a user-defined target R-squared is met. Offers a parallelized R implementation of a previously developed python method. All ploidy levels are supported. For more details, see Sandercock et al. (2024) <doi:10.1073/pnas.2403505121>.
Cluster Evolution Analytics allows us to use exploratory what if questions in the sense that the present information of an object is plugged-in a dataset in a previous time frame so that we can explore its evolution (and of its neighbors) to the present. See the URL for the papers associated with this package, as for instance, Morales-Oñate and Morales-Oñate (2024) <doi:10.1016/j.softx.2024.101921>.
Change point tests for joint distributions and copulas using pseudo-observations with multipliers or bootstrap. The processes used here have been defined in Bucher, Kojadinovic, Rohmer & Segers <doi:10.1016/j.jmva.2014.07.012> and Nasri & Remillard <doi:10.1016/j.jmva.2019.03.002>.
Different approaches to censored or truncated regression with conditional heteroscedasticity are provided. First, continuous distributions can be used for the (right and/or left censored or truncated) response with separate linear predictors for the mean and variance. Second, cumulative link models for ordinal data (obtained by interval-censoring continuous data) can be employed for heteroscedastic extended logistic regression (HXLR). In the latter type of models, the intercepts depend on the thresholds that define the intervals. Infrastructure for working with censored or truncated normal, logistic, and Student-t distributions, i.e., d/p/q/r functions and distributions3 objects.
Calculating silhouette information for clusters on circular or linear data using fast algorithms. These algorithms run in linear time on sorted data, in contrast to quadratic time by the definition of silhouette. When used together with the fast and optimal circular clustering method FOCC (Debnath & Song 2021) <doi:10.1109/TCBB.2021.3077573> implemented in R package OptCirClust', circular silhouette can be maximized to find the optimal number of circular clusters; it can also be used to estimate the period of noisy periodical data.
Supports analysis of trends in climate change, ecological and crop modelling.
These functions implement collocation-inference for continuous-time and discrete-time stochastic processes. They provide model-based smoothing, gradient-matching, generalized profiling and forwards prediction error methods.
Clique percolation community detection for weighted and unweighted networks as well as threshold and plotting functions. For more information see Farkas et al. (2007) <doi:10.1088/1367-2630/9/6/180> and Palla et al. (2005) <doi:10.1038/nature03607>.
This package provides a function that performs the adaptive mean shift algorithm for individual tree crown delineation in 3D point clouds as proposed by Ferraz et al. (2016) <doi:10.1016/j.rse.2016.05.028>, as well as supporting functions.
This package provides a suite of routines for Clifford algebras, using the Map class of the Standard Template Library. Canonical reference: Hestenes (1987, ISBN 90-277-1673-0, "Clifford algebra to geometric calculus"). Special cases including Lorentz transforms, quaternion multiplication, and Grassmann algebra, are discussed. Vignettes presenting conformal geometric algebra, quaternions and split quaternions, dual numbers, and Lorentz transforms are included. The package follows disordR discipline.
Utility functions that provides wrapper to descriptive base functions like cor, mean and table. It makes use of the formula interface to pass variables to functions. It also provides operators to concatenate (%+%), to repeat (%n%) and manage character vectors for nice display.
Spatial regression models with compositional responses using the alpha--transformation. Relevant papers include: Tsagris M. (2025), <doi:10.48550/arXiv.2510.12663>, Tsagris M. (2015), <https://soche.cl/chjs/volumes/06/02/Tsagris(2015).pdf>, Tsagris M.T., Preston S. and Wood A.T.A. (2011), <doi:10.48550/arXiv.1106.1451>.
This package provides functions supporting the common needs of packages ChemoSpec and ChemoSpec2D'.