Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Calculate expected relative risk and proportion protected assuming normally distributed log10 transformed antibody dose for a several component vaccine. Uses Hill models for each component which are combined under Bliss independence. See Saul and Fay, 2007 <DOI:10.1371/journal.pone.0000850>.
Statistical analysis of static chamber concentration data for trace gas flux estimation.
Set of tools to help interested researchers to build hospital networks from data on hospitalized patients transferred between hospitals. Methods provided have been used in Donker T, Wallinga J, Grundmann H. (2010) <doi:10.1371/journal.pcbi.1000715>, and Nekkab N, Crépey P, Astagneau P, Opatowski L, Temime L. (2020) <doi:10.1038/s41598-020-71212-6>.
This package implements an efficient algorithm for fitting the entire regularization path of quantile regression models with elastic-net penalties using a generalized coordinate descent scheme. The framework also supports SCAD and MCP penalties. It is designed for high-dimensional datasets and emphasizes numerical accuracy and computational efficiency. This package implements the algorithms proposed in Tang, Q., Zhang, Y., & Wang, B. (2022) <https://openreview.net/pdf?id=RvwMTDYTOb>.
Implementation of MCMC algorithms to estimate the Hierarchical Dirichlet Process Generalized Linear Model (hdpGLM) presented in the paper Ferrari (2020) Modeling Context-Dependent Latent Heterogeneity, Political Analysis <DOI:10.1017/pan.2019.13> and <doi:10.18637/jss.v107.i10>.
Generates (half-)normal plots with simulation envelopes using different diagnostics from a range of different fitted models. A few example datasets are included.
Efficient Bayesian multinomial logistic regression based on heavy-tailed (hyper-LASSO, non-convex) priors. The posterior of coefficients and hyper-parameters is sampled with restricted Gibbs sampling for leveraging the high-dimensionality and Hamiltonian Monte Carlo for handling the high-correlation among coefficients. A detailed description of the method: Li and Yao (2018), Journal of Statistical Computation and Simulation, 88:14, 2827-2851, <doi:10.48550/arXiv.1405.3319>.
Calculates a suite of hydrologic indices for daily time series data that are widely used in hydrology and stream ecology.
Analysis of Surface Plasmon Resonance (SPR) and Biolayer Interferometry data, with automations for high-throughput SPR. This version of the package fits the 1: 1 binding model, with and without bulkshift. It offers optional local or global Rmax fitting. The user must provide a sample sheet and a Carterra output file in Carterra's current format. There is a utility function to convert from Carterra's old output format. The user may run a custom pipeline or use the provided Runscript', which will produce a pdf file containing fitted Rmax, ka, kd and standard errors, a plot of the sensorgram and fits, and a plot of residuals. The script will also produce a .csv file with all of the relevant parameters for each spot on the SPR chip.
Calculate and visualize Healthy Eating Index (HEI) scores from National Health and Nutrition Examination Survey 24-hour dietary recall data utilizing three methods recommended by the National Cancer Institute (2024) <https://epi.grants.cancer.gov/hei/hei-methods-and-calculations.html#:~:text=To%20use%20the%20simple%20HEI,the%20total%20scores%20across%20individuals.>. Effortlessly analyze HEI scores across different demographic groups and years.
An interactive Shiny dashboard for visualizing and exploring key metrics related to HIV/AIDS, including prevalence, incidence, mortality, and treatment coverage. The dashboard is designed to work with a dataset containing specific columns with standardized names. These columns must be present in the input data for the app to function properly: year: Numeric year of the data (e.g. 2010, 2021); sex: Gender classification (e.g. Male, Female); age_group: Age bracket (e.g. 15â 24, 25â 34); hiv_prevalence: Estimated HIV prevalence percentage; hiv_incidence: Number of new HIV cases per year; aids_deaths: Total AIDS-related deaths; plhiv: Estimated number of people living with HIV; art_coverage: Percentage receiving antiretroviral therapy (ART); testing_coverage: HIV testing services coverage; causes: Description of likely HIV transmission cause (e.g. unprotected sex, drug use). The dataset structure must strictly follow this column naming convention for the dashboard to render correctly.
Estimates the shape and volume of high-dimensional datasets and performs set operations: intersection / overlap, union, unique components, inclusion test, and hole detection. Uses stochastic geometry approach to high-dimensional kernel density estimation, support vector machine delineation, and convex hull generation. Applications include modeling trait and niche hypervolumes and species distribution modeling.
The Ljung-Box test is one of the most important tests for time series diagnostics and model selection. The Hassani SACF (Sum of the Sample Autocorrelation Function) Theorem , however, indicates that the sum of sample autocorrelation function is always fix for any stationary time series with arbitrary length. This package confirms for sensitivity of the Ljung-Box test to the number of lags involved in the test and therefore it should be used with extra caution. The Hassani SACF Theorem has been described in : Hassani, Yeganegi and M. R. (2019) <doi:10.1016/j.physa.2018.12.028>.
Events from individual hydrologic time series are extracted, and events are matched across multiple time series. The package has been applied in studies such as Wasko and Guo (2022) <doi:10.1002/hyp.14563> and Mohammadpour Khoie, Guo and Wasko (2025) <doi:10.1016/j.envsoft.2025.106521>.
Implementing Hierarchical Bayesian Small Area Estimation models using the brms package as the computational backend. The modeling framework follows the methodological foundations described in area-level models. This package is designed to facilitate a principled Bayesian workflow, enabling users to conduct prior predictive checks, model fitting, posterior predictive checks, model comparison, and sensitivity analysis in a coherent and reproducible manner. It supports flexible model specifications via brms and promotes transparency in model development, aligned with the recommendations of modern Bayesian data analysis practices, implementing methods described in Rao and Molina (2015) <doi:10.1002/9781118735855>.
Error type I and Optimal critical values to test statistical hypothesis based on Neyman-Pearson Lemma and Likelihood ratio test based on random samples from several distributions. The families of distributions are Bernoulli, Exponential, Geometric, Inverse Normal, Normal, Gamma, Gumbel, Lognormal, Poisson, and Weibull. This package is an ideal resource to help with the teaching of Statistics. The main references for this package are Casella G. and Berger R. (2003,ISBN:0-534-24312-6 , "Statistical Inference. Second Edition", Duxbury Press) and Hogg, R., McKean, J., and Craig, A. (2019,ISBN:013468699, "Introduction to Mathematical Statistic. Eighth edition", Pearson).
The HBV hydrological model (Bergström, S. and Lindström, G., (2015) <doi:10.1002/hyp.10510>) has been split in modules to allow the user to build his/her own model. This version was developed by the author in IANIGLA-CONICET (Instituto Argentino de Nivologia, Glaciologia y Ciencias Ambientales - Consejo Nacional de Investigaciones Cientificas y Tecnicas) for hydroclimatic studies in the Andes. HBV.IANIGLA incorporates routines for clean and debris covered glacier melt simulations.
This package provides a tool for Hierarchical Climate Regionalization applicable to any correlation-based clustering. It adds several features and a new clustering method (called, regional linkage) to hierarchical clustering in R ('hclust function in stats library): data regridding, coarsening spatial resolution, geographic masking, contiguity-constrained clustering, data filtering by mean and/or variance thresholds, data preprocessing (detrending, standardization, and PCA), faster correlation function with preliminary big data support, different clustering methods, hybrid hierarchical clustering, multivariate clustering (MVC), cluster validation, visualization of regionalization results, and exporting region map and mean timeseries into NetCDF-4 file. The technical details are described in Badr et al. (2015) <doi:10.1007/s12145-015-0221-7>.
Facilitates building topology preserving maps for data analysis.
Uses support vector machines to identify a perfectly separating hyperplane (linear or curvilinear) between two entities in high-dimensional space. If this plane exists, the entities do not overlap. Applications include overlap detection in morphological, resource or environmental dimensions. More details can be found in: Brown et al. (2020) <doi:10.1111/2041-210X.13363> .
Builds and optimizes Hopfield artificial neural networks (Hopfield, 1982, <doi:10.1073/pnas.79.8.2554>). One-layer and three-layer models are implemented. The energy of the Hopfield network is minimized with formula from Krotov and Hopfield (2016, <doi:10.48550/ARXIV.1606.01164>). Optimization (supervised learning) is done through a gradient-based method. Classification is done with S3 methods predict(). Parallelization with OpenMP is used if available during compilation.
The Harmonised Index of Consumer Prices (HICP) is the key economic figure to measure inflation in the euro area. The methodology underlying the HICP is documented in the HICP Methodological Manual (<https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/w/ks-gq-24-003>). Based on the manual, this package provides functions to access and work with HICP data from Eurostat's public database (<https://ec.europa.eu/eurostat/data/database>).
Simulates stochastic hybrid models for transmission of infectious diseases in dynamic networks. It is a metapopulation model in which each node in the network is a sub-population and disease spreads within nodes and among them, combining two approaches: stochastic simulation algorithm (<doi:10.1146/annurev.physchem.58.032806.104637>) and individual-based approach, respectively. Equations that models spread within nodes are customizable and there are two link types among nodes: migration and influence (commuting). More information in Fernando S. Marques, Jose H. H. Grisi-Filho, Marcos Amaku et al. (2020) <doi:10.18637/jss.v094.i06>.
Offers a convenient way to compute parameters in the framework of the theory of vocational choice introduced by J.L. Holland, (1997). A comprehensive summary to this theory of vocational choice is given in Holland, J.L. (1997). Making vocational choices. A theory of vocational personalities and work environments. Lutz, FL: Psychological Assessment.