Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a platform for computing competition indices and experimenting with spatially explicit individual-based vegetation models.
Execute the self-controlled case series (SCCS) design using observational data in the OMOP Common Data Model. Extracts all necessary data from the database and transforms it to the format required for SCCS. Age and season can be modeled using splines assuming constant hazard within calendar months. Event-dependent censoring of the observation period can be corrected for. Many exposures can be included at once (MSCCS), with regularization on all coefficients except for the exposure of interest. Includes diagnostics for all major assumptions of the SCCS.
Time series area-level models for small area estimation. The package supplements the functionality of the sae package. Specifically, it includes EBLUP fitting of the Rao-Yu model in the original form without a spatial component. The package also offers a modified ("dynamic") version of the Rao-Yu model, replacing the assumption of stationarity. Both univariate and multivariate applications are supported. Of particular note is the allowance for covariance of the area-level sample estimates over time, as encountered in rotating panel designs such as the U.S. National Crime Victimization Survey or present in a time-series of 5-year estimates from the American Community Survey. Key references to the methods include J.N.K. Rao and I. Molina (2015, ISBN:9781118735787), J.N.K. Rao and M. Yu (1994) <doi:10.2307/3315407>, and R.E. Fay and R.A. Herriot (1979) <doi:10.1080/01621459.1979.10482505>.
This package provides a Bayesian semiparametric Dirichlet process mixtures to estimate correlated receiver operating characteristic (ROC) surfaces and the associated volume under the surface (VUS) with stochastic order constraints. The reference paper is:Zhen Chen, Beom Seuk Hwang, (2018) "A Bayesian semiparametric approach to correlated ROC surfaces with stochastic order constraints". Biometrics, 75, 539-550. <doi:10.1111/biom.12997>.
This package provides functions used in courses taught by Dr. Small at Drew University.
Generates Skew Factor Models data and applies Sparse Online Principal Component (SOPC), Incremental Principal Component (IPC), Projected Principal Component (PPC), Perturbation Principal Component (PPC), Stochastic Approximation Principal Component (SAPC), Sparse Principal Component (SPC) and other PC methods to estimate model parameters. It includes capabilities for calculating mean squared error, relative error, and sparsity of the loading matrix.The philosophy of the package is described in Guo G. (2023) <doi:10.1007/s00180-022-01270-z>.
The SAVVY (Survival Analysis for AdVerse Events with VarYing Follow-Up Times) project is a consortium of academic and pharmaceutical industry partners that aims to improve the analyses of adverse event (AE) data in clinical trials through the use of survival techniques appropriately dealing with varying follow-up times and competing events, see Stegherr, Schmoor, Beyersmann, et al. (2021) <doi:10.1186/s13063-021-05354-x>. Although statistical methodologies have advanced, in AE analyses often the incidence proportion, the incidence density or a non-parametric Kaplan-Meier estimator are used, which either ignore censoring or competing events. This package contains functions to easily conduct the proposed improved AE analyses.
Fit latent variable models with the GEV distribution as the data likelihood and the GEV parameters following latent Gaussian processes. The models in this package are built using the template model builder TMB in R, which has the fast ability to integrate out the latent variables using Laplace approximation. This package allows the users to choose in the fit function which GEV parameter(s) is considered as a spatially varying random effect following a Gaussian process, so the users can fit spatial GEV models with different complexities to their dataset without having to write the models in TMB by themselves. This package also offers methods to sample from both fixed and random effects posteriors as well as the posterior predictive distributions at different spatial locations. Methods for fitting this class of models are described in Chen, Ramezan, and Lysy (2024) <doi:10.48550/arXiv.2110.07051>.
This package provides infrastructure functionalities such as missing value treatment, information value calculation, GINI calculation etc. which are used for developing a traditional credit scorecard as well as a machine learning based model. The functionalities defined are standard steps for any credit underwriting scorecard development, extensively used in financial domain.
This package provides a widget for shiny apps to handle schedule expression input, using the cron-expression-input JavaScript component. Note that this does not edit the crontab file, it is just an input element for the schedules. See <https://github.com/DatalabFabriek/shinycroneditor/blob/main/inst/examples/shiny-app.R> for an example implementation.
This package provides a tool to calculate sky illuminance values (in lux) for both sun and moon. The model is a translation of the Fortran code by Janiczek and DeYoung (1987) <https://archive.org/details/DTIC_ADA182110>.
Testing of soil for the contents of organic carbon, and available macro- and micro-nutrients is a crucial part of soil fertility assessment. This package computes some routinely tested soil properties viz. organic carbon (C), total nitrogen (N), available N, mineral N, available phosphorus (P), available potassium (K), available iron (Fe), available zinc (Zn), available manganese (Mn), available copper (Cu), and available nickel (Ni) in soil based on laboratory analysis data obtained by most commonly followed protocols. Besides, it can also draw standard curves based on absorption/emission vs. concentration data, and give out unknown concentrations from absorption/emission readings.
Read in SAS Data ('.sas7bdat Files) into Apache Spark from R. Apache Spark is an open source cluster computing framework available at <http://spark.apache.org>. This R package uses the spark-sas7bdat Spark package (<https://spark-packages.org/package/saurfang/spark-sas7bdat>) to import and process SAS data in parallel using Spark'. Hereby allowing to execute dplyr statements in parallel on top of SAS data.
Making specification curve analysis easy, fast, and pretty. It improves upon existing offerings with additional features and tidyverse integration. Users can easily visualize and evaluate how their models behave under different specifications with a high degree of customization. For a description and applications of specification curve analysis see Simonsohn, Simmons, and Nelson (2020) <doi:10.1038/s41562-020-0912-z>.
During the preparation of data set(s) one usually performs some sanity checks. The idea is that irrespective of where the checks are performed, they are centralized by this package in order to list all at once with examples if a check failed.
This package performs support vectors analysis for data sets with survival outcome. Three approaches are available in the package: The regression approach takes censoring into account when formulating the inequality constraints of the support vector problem. In the ranking approach, the inequality constraints set the objective to maximize the concordance index for comparable pairs of observations. The hybrid approach combines the regression and ranking constraints in the same model.
Artificial selection through selective breeding is an efficient way to induce changes in traits of interest in experimental populations. This package (sra) provides a set of tools to analyse artificial-selection response datasets. The data typically feature for several generations the average value of a trait in a population, the variance of the trait, the population size and the average value of the parents that were chosen to breed. Sra implements two families of models aiming at describing the dynamics of the genetic architecture of the trait during the selection response. The first family relies on purely descriptive (phenomenological) models, based on an autoregressive framework. The second family provides different mechanistic models, accounting e.g. for inbreeding, mutations, genetic and environmental canalization, or epistasis. The parameters underlying the dynamics of the time series are estimated by maximum likelihood. The sra package thus provides (i) a wrapper for the R functions mle() and optim() aiming at fitting in a convenient way a predetermined set of models, and (ii) some functions to plot and analyze the output of the models.
You can easily add advanced cohort-building component to your analytical dashboard or simple Shiny app. Then you can instantly start building cohorts using multiple filters of different types, filtering datasets, and filtering steps. Filters can be complex and data-specific, and together with multiple filtering steps you can use complex filtering rules. The cohort-building sidebar panel allows you to easily work with filters, add and remove filtering steps. It helps you with handling missing values during filtering, and provides instant filtering feedback with filter feedback plots. The GUI panel is not only compatible with native shiny bookmarking, but also provides reproducible R code.
The SALTSampler package facilitates Monte Carlo Markov Chain (MCMC) sampling of random variables on a simplex. A Self-Adjusting Logit Transform (SALT) proposal is used so that sampling is still efficient even in difficult cases, such as those in high dimensions or with parameters that differ by orders of magnitude. Special care is also taken to maintain accuracy even when some coordinates approach 0 or 1 numerically. Diagnostic and graphic functions are included in the package, enabling easy assessment of the convergence and mixing of the chain within the constrained space.
This package implements the synthetic control group method for comparative case studies as described in Abadie and Gardeazabal (2003) and Abadie, Diamond, and Hainmueller (2010, 2011, 2014). The synthetic control method allows for effect estimation in settings where a single unit (a state, country, firm, etc.) is exposed to an event or intervention. It provides a data-driven procedure to construct synthetic control units based on a weighted combination of comparison units that approximates the characteristics of the unit that is exposed to the intervention. A combination of comparison units often provides a better comparison for the unit exposed to the intervention than any comparison unit alone.
Sensitivity analysis for case-control studies in which some cases may meet a more narrow definition of being a case compared to other cases which only meet a broad definition. The sensitivity analyses are described in Small, Cheng, Halloran and Rosenbaum (2013, "Case Definition and Sensitivity Analysis", Journal of the American Statistical Association, 1457-1468). The functions sens.analysis.mh and sens.analysis.aberrant.rank provide sensitivity analyses based on the Mantel-Haenszel test statistic and aberrant rank test statistic as described in Rosenbaum (1991, "Sensitivity Analysis for Matched Case Control Studies", Biometrics); see also Section 1 of Small et al. The function adaptive.case.test provides adaptive inferences as described in Section 5 of Small et al. The function adaptive.noether.brown provides a sensitivity analysis for a matched cohort study based on an adaptive test. The other functions in the package are internal functions.
Using any importation code designed for SAS users to read ASCII files into sas7bdat files, this package parses through the INPUT block of a .sas syntax file to design the parameters needed for a read.fwf() function call. This allows the user to specify the location of the ASCII (often a .dat') file and the location of the SAS syntax file, and then load the data frame directly into R in just one step.
Shrinkage estimator for polygenic risk prediction models based on summary statistics of genome-wide association studies.
This package implements the Self-Similarity Test for Normality (SSTN), a new statistical test designed to assess whether a given sample originates from a normal distribution. The procedure is based on iteratively estimating the characteristic function of the sum of standardized i.i.d. random variables and comparing it to the characteristic function of the standard normal distribution. A Monte Carlo procedure is used to determine the empirical distribution of the test statistic under the null hypothesis. Details of the methodology are described in Anarat and Schwender (2025), "A normality test based on self-similarity" (Submitted).