Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Simulate DNA sequences for the node substitution model. In the node substitution model, substitutions accumulate additionally during a speciation event, providing a potential mechanistic explanation for substitution rate variation. This package provides tools to simulate such a process, simulate a reference process with only substitutions along the branches, and provides tools to infer phylogenies from alignments. More information can be found in Janzen (2021) <doi:10.1093/sysbio/syab085>.
Simulates the extinction of species in ecological networks and it analyzes its cascading effects, described in Dunne et al. (2002) <doi:10.1073/pnas.192407699>.
This package performs Bayesian wavelet analysis using individual non-local priors as described in Sanyal & Ferreira (2017) <DOI:10.1007/s13571-016-0129-3> and non-local prior mixtures as described in Sanyal (2025) <DOI:10.48550/arXiv.2501.18134>.
This data package contains the Item Response Theory (IRT) parameters for the National Center for Education Statistics (NCES) items used on the National Assessment of Education Progress (NAEP) from 1990 to 2015. The values in these tables are used along with NAEP data to turn student item responses into scores and include information about item difficulty, discrimination, and guessing parameter for 3 parameter logit (3PL) items. Parameters for Generalized Partial Credit Model (GPCM) items are also included. The adjustments table contains the information regarding the treatment of items (e.g., deletion of an item or a collapsing of response categories), when these items did not appear to fit the item response models used to describe the NAEP data. Transformation constants change the score estimates that are obtained from the IRT scaling program to the NAEP reporting metric. Values from the years 2000 - 2013 were taken from the NCES website <https://nces.ed.gov/nationsreportcard/> and values from 1990 - 1998 and 2015 were extracted from their NAEP data files. All subtest names were reduced and homogenized to one word (e.g. "Reading to gain information" became "information"). The various subtest names for univariate transformation constants were all homogenized to "univariate".
This package provides Scilab n1qn1'. This takes more memory than traditional L-BFGS. The n1qn1 routine is useful since it allows prespecification of a Hessian. If the Hessian is near enough the truth in optimization it can speed up the optimization problem. The algorithm is described in the Scilab optimization documentation located at <https://www.scilab.org/sites/default/files/optimization_in_scilab.pdf>. This version uses manually modified code from f2c to make this a C only binary.
Collection of functions for fast manipulation, handling, and analysis of large-scale networks based on family and social data. Functions are utility functions used to manipulate data in three "formats": sparse adjacency matrices, pedigree trio family data, and pedigree family data. When possible, the functions should be able to handle millions of data points quickly for use in combination with data from large public national registers and databases. Kenneth Lange (2003, ISBN:978-8181281135).
This package provides gradient-based MCMC sampling algorithms for use with the MCMC engine provided by the nimble package. This includes two versions of Hamiltonian Monte Carlo (HMC) No-U-Turn (NUTS) sampling, and (under development) Langevin samplers. The `NUTS_classic` sampler implements the original HMC-NUTS algorithm as described in Hoffman and Gelman (2014) <doi:10.48550/arXiv.1111.4246>. The `NUTS` sampler is a modern version of HMC-NUTS sampling matching the HMC sampler available in version 2.32.2 of Stan (Stan Development Team, 2023). In addition, convenience functions are provided for generating and modifying MCMC configuration objects which employ HMC sampling. Functionality of the nimbleHMC package is described further in Turek, et al (2024) <doi: 10.21105/joss.06745>.
The Dirichlet (aka NBD-Dirichlet) model describes the purchase incidence and brand choice of consumer products. We estimate the model and summarize various theoretical quantities of interest to marketing researchers. Also provides functions for making tables that compare observed and theoretical statistics.
This package provides quality control (QC), normalization, and batch effect correction operations for NanoString nCounter data, Talhouk et al. (2016) <doi:10.1371/journal.pone.0153844>. Various metrics are used to determine which samples passed or failed QC. Gene expression should first be normalized to housekeeping genes, before a reference-based approach is used to adjust for batch effects. Raw NanoString data can be imported in the form of Reporter Code Count (RCC) files.
This package implements methods for centrality related analyses of networks. While the package includes the possibility to build more than 20 indices, its main focus lies on index-free assessment of centrality via partial rankings obtained by neighborhood-inclusion or positional dominance. These partial rankings can be analyzed with different methods, including probabilistic methods like computing expected node ranks and relative rank probabilities (how likely is it that a node is more central than another?). The methodology is described in depth in the vignettes and in Schoch (2018) <doi:10.1016/j.socnet.2017.12.003>.
Dirichlet process mixture of multivariate normal, skew normal or skew t-distributions modeling oriented towards flow-cytometry data preprocessing applications. Method is detailed in: Hejblum, Alkhassimn, Gottardo, Caron & Thiebaut (2019) <doi: 10.1214/18-AOAS1209>.
Allow users to obtain basketball statistics for the Australian basketball league NBL'<https://nbl.com.au/>. Stats include play-by-play, shooting locations, results and box scores for teams and players.
This package provides functions for working with NHS number checksums. The UK's National Health Service issues NHS numbers to all users of its services and this package implements functions for verifying that the numbers are valid according to the checksum scheme the NHS use. Numbers can be validated and checksums created.
Additional nonlinear regression functions using self-start (SS) algorithms. One of the functions is the Beta growth function proposed by Yin et al. (2003) <doi:10.1093/aob/mcg029>. There are several other functions with breakpoints (e.g. linear-plateau, plateau-linear, exponential-plateau, plateau-exponential, quadratic-plateau, plateau-quadratic and bilinear), a non-rectangular hyperbola and a bell-shaped curve. Twenty eight (28) new self-start (SS) functions in total. This package also supports the publication Nonlinear regression Models and applications in agricultural research by Archontoulis and Miguez (2015) <doi:10.2134/agronj2012.0506>, a book chapter with similar material <doi:10.2134/appliedstatistics.2016.0003.c15> and a publication by Oddi et. al. (2019) in Ecology and Evolution <doi:10.1002/ece3.5543>. The function nlsLMList uses nlsLM for fitting, but it is otherwise almost identical to nlme::nlsList'.In addition, this release of the package provides functions for conducting simulations for nlme and gnls objects as well as bootstrapping. These functions are intended to work with the modeling framework of the nlme package. It also provides four vignettes with extended examples.
Datasets of driving offences and fines in New Zealand between 2009 and 2017. Originally published by the New Zealand Police at <http://www.police.govt.nz/about-us/publication/road-policing-driver-offence-data-january-2009-december-2017>.
Designed to be compatible with the R package DBI (Database Interface) when connecting to Amazon Web Service ('AWS') Athena <https://aws.amazon.com/athena/>. To do this the R AWS Software Development Kit ('SDK') paws <https://github.com/paws-r/paws> is used as a driver.
Routines for fitting and simulating data under autoregressive fractionally integrated moving average (ARFIMA) models, without the constraint of covariance stationarity. Two fitting methods are implemented, a pseudo-maximum likelihood method and a minimum distance estimator. Mayoral, L. (2007) <doi:10.1111/j.1368-423X.2007.00202.x>. Beran, J. (1995) <doi:10.1111/j.2517-6161.1995.tb02054.x>.
This package provides a cross-platform interface to prevent the operating system from going to sleep while long-running R tasks are executing.
Color palettes based on nature inspired colours in "Sri Lanka".
This package provides functions to query databases and notes in Notion', using the official REST API. To learn more about the functionality of the Notion API, see <https://developers.notion.com/>.
Computes the probability density function, cumulative distribution function, quantile function, random numbers and measures of inference for the following general families of distributions (each family defined in terms of an arbitrary cdf G): Marshall Olkin G distributions, exponentiated G distributions, beta G distributions, gamma G distributions, Kumaraswamy G distributions, generalized beta G distributions, beta extended G distributions, gamma G distributions, gamma uniform G distributions, beta exponential G distributions, Weibull G distributions, log gamma G I distributions, log gamma G II distributions, exponentiated generalized G distributions, exponentiated Kumaraswamy G distributions, geometric exponential Poisson G distributions, truncated-exponential skew-symmetric G distributions, modified beta G distributions, and exponentiated exponential Poisson G distributions.
Package including an interactive Shiny application for testing normality visually.
This package provides a complete and seamless Nonmem simulation interface within R. Turns Nonmem control streams into simulation control streams, executes them with specified simulation input data and returns the results. The simulation is performed by Nonmem', eliminating manual work and risks of re-implementation of models in other tools.
This package implements several nonparametric regression approaches for the inclusion of covariate information on the receiver operating characteristic (ROC) framework.