Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Compute expected shortfall (ES) and Value at Risk (VaR) from a quantile function, distribution function, random number generator, probability density function, or data. ES is also known as Conditional Value at Risk (CVaR). Virtually any continuous distribution can be specified. The functions are vectorized over the arguments. The computations are done directly from the definitions, see e.g. Acerbi and Tasche (2002) <doi:10.1111/1468-0300.00091>. Some support for GARCH models is provided, as well.
CPP is a multiple criteria decision method to evaluate alternatives on complex decision making problems, by a probabilistic approach. The CPP was created and expanded by Sant'Anna, Annibal P. (2015) <doi:10.1007/978-3-319-11277-0>.
Simulate plasma caffeine concentrations using population pharmacokinetic model described in Lee, Kim, Perera, McLachlan and Bae (2015) <doi:10.1007/s00431-015-2581-x>.
This package provides functions to prepare and filter an origin-destination matrix for thematic flow mapping purposes. This comes after Bahoken, Francoise (2016), Mapping flow matrix a contribution, PhD in Geography - Territorial sciences. See Bahoken (2017) <doi:10.4000/netcom.2565>.
One way to choose the number of principal components is via the reconstruction error. This package is designed mainly for this purpose. Graphical representation is also supported, plus some other principal component analysis related functions. References include: Jolliffe I.T. (2002). Principal Component Analysis. <doi:10.1007/b98835> and Mardia K.V., Kent J.T. and Bibby J.M. (1979). Multivariate Analysis. ISBN: 978-0124712522. London: Academic Press.
Automatic specification and estimation of reserve demand curves for central bank operations. The package can help to choose the best demand curve and identify additional explanatory variables. Various plot and predict options are included. For more details, see Chen et al. (2023) <https://www.imf.org/en/Publications/WP/Issues/2023/09/01/Modeling-the-Reserve-Demand-to-Facilitate-Central-Bank-Operations-538754>.
Estimating mutation and selection coefficients on synonymous codon bias usage based on models of ribosome overhead cost (ROC). Multinomial logistic regression and Markov Chain Monte Carlo are used to estimate and predict protein production rates with/without the presence of expressions and measurement errors. Work flows with examples for simulation, estimation and prediction processes are also provided with parallelization speedup. The whole framework is tested with yeast genome and gene expression data of Yassour, et al. (2009) <doi:10.1073/pnas.0812841106>.
This package provides an expectation maximization (EM) algorithm to fit a mixture of continuous time Markov models for use with clickstream or other sequence type data. Gallaugher, M.P.B and McNicholas, P.D. (2018) <arXiv:1802.04849>.
Routines for solving convex optimization problems with cone constraints by means of interior-point methods. The implemented algorithms are partially ported from CVXOPT, a Python module for convex optimization (see <https://cvxopt.org> for more information).
This package performs a series of offline and/or online change-point detection algorithms for 1) univariate mean: <doi:10.1214/20-EJS1710>, <arXiv:2006.03283>; 2) univariate polynomials: <doi:10.1214/21-EJS1963>; 3) univariate and multivariate nonparametric settings: <doi:10.1214/21-EJS1809>, <doi:10.1109/TIT.2021.3130330>; 4) high-dimensional covariances: <doi:10.3150/20-BEJ1249>; 5) high-dimensional networks with and without missing values: <doi:10.1214/20-AOS1953>, <arXiv:2101.05477>, <arXiv:2110.06450>; 6) high-dimensional linear regression models: <arXiv:2010.10410>, <arXiv:2207.12453>; 7) high-dimensional vector autoregressive models: <arXiv:1909.06359>; 8) high-dimensional self exciting point processes: <arXiv:2006.03572>; 9) dependent dynamic nonparametric random dot product graphs: <arXiv:1911.07494>; 10) univariate mean against adversarial attacks: <arXiv:2105.10417>.
This package contains selected variables from the time series profiles for statistical areas level 2 from the 2006, 2011, and 2016 censuses of population and housing, Australia. Also provides methods for viewing the questions asked for convenience during analysis.
Function using lemmatization to classify educational programs according to the CINE(Classification International Normalized of Education) for Peru.
Supports analysis of trends in climate change, ecological and crop modelling.
The goal of cvsem is to provide functions that allow for comparing Structural Equation Models (SEM) using cross-validation. Users can specify multiple SEMs using lavaan syntax. cvsem computes the Kullback Leibler (KL) Divergence between 1) the model implied covariance matrix estimated from the training data and 2) the sample covariance matrix estimated from the test data described in Cudeck, Robert & Browne (1983) <doi:10.18637/jss.v048.i02>. The KL Divergence is computed for each of the specified SEMs allowing for the models to be compared based on their prediction errors.
Git hook scripts are useful for identifying simple issues before submission to code review. captain (hook) is an R package to manage and run git pre-commit hooks.
This package provides functions supporting the common needs of packages ChemoSpec and ChemoSpec2D'.
This package contains a time series classification method that obtains a set of filters that maximize the between-class and minimize the within-class distances.
The congeneric normal-ogive model is a popular model for psychometric data (McDonald, R. P. (1997) <doi:10.1007/978-1-4757-2691-6_15>). This model estimates the model, calculates theoretical and concrete reliability coefficients, and predicts the latent variable of the model. This is the companion package to Moss (2020) <doi:10.31234/osf.io/nvg5d>.
This package provides a comprehensive toolkit for generating continuous test norms in psychometrics and biometrics, and analyzing model fit. The package offers both distribution-free modeling using Taylor polynomials and parametric modeling using the beta-binomial and the Sinh-Arcsinh distribution. Originally developed for achievement tests, it is applicable to a wide range of mental, physical, or other test scores dependent on continuous or discrete explanatory variables. The package provides several advantages: It minimizes deviations from representativeness in subsamples, interpolates between discrete levels of explanatory variables, and significantly reduces the required sample size compared to conventional norming per age group. cNORM enables graphical and analytical evaluation of model fit, accommodates a wide range of scales including those with negative and descending values, and even supports conventional norming. It generates norm tables including confidence intervals. It also includes methods for addressing representativeness issues through Iterative Proportional Fitting. Based on Lenhard et al. (2016) <doi:10.1177/1073191116656437>, Lenhard et al. (2019) <doi:10.1371/journal.pone.0222279>, Lenhard and Lenhard (2021) <doi:10.1177/0013164420928457> and Gary et al. (2023) <doi:10.1007/s00181-023-02456-0>.
This package provides functions that format statistical output in a way that can be inserted into R Markdown documents. This is analogous to the apa_print() functions in the papaja package but prints Markdown or LaTeX syntax.
Joint distribution of number of crossings and the longest run in a series of independent Bernoulli trials. The computations uses an iterative procedure where computations are based on results from shorter series. The procedure conditions on the start value and partitions by further conditioning on the position of the first crossing (or none).
Parameter estimation of regression models with fixed group effects, when the group variable is missing while group-related variables are available. Parametric and semi-parametric approaches described in Marbac et al. (2020) <arXiv:2012.14159> are implemented.
This package implements a wide range of dose escalation designs. The focus is on model-based designs, ranging from classical and modern continual reassessment methods (CRMs) based on dose-limiting toxicity endpoints to dual-endpoint designs taking into account a biomarker/efficacy outcome. Bayesian inference is performed via MCMC sampling in JAGS, and it is easy to setup a new design with custom JAGS code. However, it is also possible to implement 3+3 designs for comparison or models with non-Bayesian estimation. The whole package is written in a modular form in the S4 class system, making it very flexible for adaptation to new models, escalation or stopping rules. Further details are presented in Sabanes Bove et al. (2019) <doi:10.18637/jss.v089.i10>.
Various cladogenesis-related calculations that are slow in pure R are implemented in C++ with Rcpp. These include the calculation of the probability of various scenarios for the inheritance of geographic range at the divergence events on a phylogenetic tree, and other calculations necessary for models which are not continuous-time markov chains (CTMC), but where change instead occurs instantaneously at speciation events. Typically these models must assess the probability of every possible combination of (ancestor state, left descendent state, right descendent state). This means that there are up to (# of states)^3 combinations to investigate, and in biogeographical models, there can easily be hundreds of states, so calculation time becomes an issue. C++ implementation plus clever tricks (many combinations can be eliminated a priori) can greatly speed the computation time over naive R implementations. CITATION INFO: This package is the result of my Ph.D. research, please cite the package if you use it! Type: citation(package="cladoRcpp") to get the citation information.