Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Testing for and dating periods of explosive dynamics (exuberance) in time series using the univariate and panel recursive unit root tests proposed by Phillips et al. (2015) <doi:10.1111/iere.12132> and Pavlidis et al. (2016) <doi:10.1007/s11146-015-9531-2>.The recursive least-squares algorithm utilizes the matrix inversion lemma to avoid matrix inversion which results in significant speed improvements. Simulation of a variety of periodically-collapsing bubble processes. Details can be found in Vasilopoulos et al. (2022) <doi:10.18637/jss.v103.i10>.
This package provides set of functions aimed at epidemiologists. The package includes commands for measures of association and impact for case control studies and cohort studies. It may be particularly useful for outbreak investigations including univariable analysis and stratified analysis. The functions for cohort studies include the CS(), CSTable() and CSInter() commands. The functions for case control studies include the CC(), CCTable() and CCInter() commands. References - Cornfield, J. 1956. A statistical problem arising from retrospective studies. In Vol. 4 of Proceedings of the Third Berkeley Symposium, ed. J. Neyman, 135-148. Berkeley, CA - University of California Press. Woolf, B. 1955. On estimating the relation between blood group disease. Annals of Human Genetics 19 251-253. Reprinted in Evolution of Epidemiologic Ideas Annotated Readings on Concepts and Methods, ed. S. Greenland, pp. 108-110. Newton Lower Falls, MA Epidemiology Resources. Gilles Desve & Peter Makary, 2007. CSTABLE Stata module to calculate summary table for cohort study Statistical Software Components S456879, Boston College Department of Economics. Gilles Desve & Peter Makary, 2007. CCTABLE Stata module to calculate summary table for case-control study Statistical Software Components S456878, Boston College Department of Economics.
Treatments of a one-way layout, being equivalent to a control, can be selected with this package. Bonferroni adjusted "two one-sided t-tests" (TOST) and related simultaneous confidence intervals are given for both differences or ratios of means of normally distributed data. For the case of equal variances and balanced sample sizes for the treatment groups, the single-step procedure of Bofinger and Bofinger (1995) <doi:10.1111/j.2517-6161.1995.tb02058.x> can be chosen. For non-normal data, the Wilcoxon test is applied.
Automatic generation of quizzes or individual questions as (interactive) forms within rmarkdown or quarto documents based on R/exams exercises.
The peak fitting of spectral data is performed by using the frame work of EM algorithm. We adapted the EM algorithm for the peak fitting of spectral data set by considering the weight of the intensity corresponding to the measurement energy steps (Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019, 2021 and 2023) <doi:10.1080/14686996.2019.1620123>, <doi:10.1080/27660400.2021.1899449> <doi:10.1080/27660400.2022.2159753>. The package efficiently estimates the parameters of Gaussian mixture model during iterative calculation between E-step and M-step, and the parameters are converged to a local optimal solution. This package can support the investigation of peak shift with two advantages: (1) a large amount of data can be processed at high speed; and (2) stable and automatic calculation can be easily performed.
Software of esDesign is developed to implement the adaptive enrichment designs with sample size re-estimation presented in Lin et al. (2021) <doi: 10.1016/j.cct.2020.106216>. In details, three-proposed trial designs are provided, including the AED1-SSR (or ES1-SSR), AED2-SSR (or ES2-SSR) and AED3-SSR (or ES3-SSR). In addition, this package also contains several widely used adaptive designs, such as the Marker Sequential Test (MaST) design proposed Freidlin et al. (2014) <doi:10.1177/1740774513503739>, the adaptive enrichment designs without early stopping (AED or ES), the sample size re-estimation procedure (SSR) based on the conditional power proposed by Proschan and Hunsberger (1995), and some useful functions. In details, we can calculate the futility and/or efficacy stopping boundaries, the sample size required, calibrate the value of the threshold of the difference between subgroup-specific test statistics, conduct the simulation studies in AED, SSR, AED1-SSR, AED2-SSR and AED3-SSR.
This package provides a tool which allows users to create and evaluate ensembles of species distribution model (SDM) predictions. Functionality is offered through R functions or a GUI (R Shiny app). This tool can assist users in identifying spatial uncertainties and making informed conservation and management decisions. The package is further described in Woodman et al (2019) <doi:10.1111/2041-210X.13283>.
Displays for model fits of multiple models and their ensembles. For classification models, the plots are heatmaps, for regression, scatterplots.
The encompassing test is developed based on multi-step-ahead predictions of two nested models as in Pitarakis, J. (2023) <doi:10.48550/arXiv.2312.16099>. The statistics are standardised to a normal distribution, and the null hypothesis is that the larger model contains no additional useful information. P-values will be provided in the output.
This package provides tools to fit Mixture Cure Rate models via the Expectation-Maximization (EM) algorithm, allowing for flexible link functions in the cure component and various survival distributions in the latency part. The package supports user-specified link functions, includes methods for parameter estimation and model diagnostics, and provides residual analysis tailored for cure models. The classical theory methods used are described in Berkson, J. and Gage, R. P. (1952) <doi:10.2307/2281318>, Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) <https://www.jstor.org/stable/2984875>, Bazán, J., Torres-Avilés, F., Suzuki, A. and Louzada, F. (2017)<doi:10.1002/asmb.2215>.
Goodness-of-fit tests for discrete multivariate data. It is tested if a given observation is likely to have occurred under the assumption of an ab-initio model. Monte Carlo methods are provided to make the package capable of solving high-dimensional problems.
Some EM-type algorithms to estimate parameters for the well-known Heckman selection model are provided in the package. Such algorithms are as follow: ECM(Expectation/Conditional Maximization), ECM(NR)(the Newton-Raphson method is adapted to the ECM) and ECME(Expectation/Conditional Maximization Either). Since the algorithms are based on the EM algorithm, they also have EMâ s main advantages, namely, stability and ease of implementation. Further details and explanations of the algorithms can be found in Zhao et al. (2020) <doi: 10.1016/j.csda.2020.106930>.
Obtain Bayesian posterior distributions of dominance hierarchy steepness (Neumann and Fischer (2023) <doi:10.1111/2041-210X.14021>). Steepness estimation is based on Bayesian implementations of either Elo-rating or David's scores.
This package performs analyzes and estimates of environmental covariates and genetic parameters related to selection strategies and development of superior genotypes. It has two main functionalities, the first being about prediction models of covariates and environmental processes, while the second deals with the estimation of genetic parameters and selection strategies. Designed for researchers and professionals in genetics and environmental sciences, the package combines statistical methods for modeling and data analysis. This includes the plastochron estimate proposed by Porta et al. (2024) <doi:10.1590/1807-1929/agriambi.v28n10e278299>, Stress indices for genotype selection referenced by Ghazvini et al. (2024) <doi:10.1007/s10343-024-00981-1>, the Environmental Stress Index described by Tazzo et al. (2024) <https://revistas.ufg.br/vet/article/view/77035>, industrial quality indices of wheat genotypes (Szareski et al., 2019), <doi:10.4238/gmr18223>, Ear Indexes estimation (Rigotti et al., 2024), <doi:10.13083/reveng.v32i1.17394>, Selection index for protein and grain yield (de Pelegrin et al., 2017), <doi:10.4236/ajps.2017.813224>, Estimation of the ISGR - Genetic Selection Index for Resilience for environmental resilience (Bandeira et al., 2024) <https://www.cropj.com/Carvalho_18_12_2024_825_830.pdf>, estimation of Leaf Area Index (Meira et al., 2015) <https://www.fag.edu.br/upload/revista/cultivando_o_saber/55d1ef202e494.pdf>, Restriction of control variability (Carvalho et al., 2023) <doi:10.4025/actasciagron.v45i1.56156>, Risk of Disease Occurrence in Soybeans described by Engers et al. (2024) <doi:10.1007/s40858-024-00649-1> and estimation of genetic parameters for selection based on balanced experiments (Yadav et al., 2024) <doi:10.1155/2024/9946332>.
This package provides various functions for reading and preparing the Panel Study of Income Dynamics (PSID) for longitudinal analysis, including functions that read the PSID's fixed width format files directly into R, rename all of the PSID's longitudinal variables so that recurring variables have consistent names across years, simplify assembling longitudinal datasets from cross sections of the PSID Family Files, and export the resulting PSID files into file formats common among other statistical programming languages ('SAS', STATA', and SPSS').
Given the scores from decision makers, the analytic hierarchy process can be conducted easily.
Estimates extinction risk from population time series under a drifted Wiener process using the w-z method for accurate confidence intervals.
Calculates the empirical likelihood ratio and p-value for a mean-type hypothesis (or multiple mean-type hypotheses) based on two samples with possible censored data.
This package provides various tools for preprocessing Emission-Excitation-Matrix (EEM) for Parallel Factor Analysis (PARAFAC). Different methods are also provided to calculate common metrics such as humification index and fluorescence index.
An extension of knitr that adds flexibility in several ways. One common source of frustration with knitr is that it assumes the directory where the source file lives should be the working directory, which is often not true. ezknitr addresses this problem by giving you complete control over where all the inputs and outputs are, and adds several other convenient features to make rendering markdown/HTML documents easier.
Convenience functions for implementing extended two-way fixed effect regressions a la Wooldridge (2021, 2023) <doi:10.2139/ssrn.3906345>, <doi:10.1093/ectj/utad016>.
Package computes and displays tables with support for SPSS'-style labels, multiple and nested banners, weights, multiple-response variables and significance testing. There are facilities for nice output of tables in knitr', Shiny', *.xlsx files, R and Jupyter notebooks. Methods for labelled variables add value labels support to base R functions and to some functions from other packages. Additionally, the package brings popular data transformation functions from SPSS Statistics and Excel': RECODE', COUNT', COUNTIF', VLOOKUP and etc. These functions are very useful for data processing in marketing research surveys. Package intended to help people to move data processing from Excel and SPSS to R.
Fit models of modularity to morphological landmarks. Perform model selection on results. Fit models with a single within-module correlation or with separate within-module correlations fitted to each module.
The algorithm of semi-supervised learning based on finite Gaussian mixture models with a missing-data mechanism is designed for a fitting g-class Gaussian mixture model via maximum likelihood (ML). It is proposed to treat the labels of the unclassified features as missing-data and to introduce a framework for their missing as in the pioneering work of Rubin (1976) for missing in incomplete data analysis. This dependency in the missingness pattern can be leveraged to provide additional information about the optimal classifier as specified by Bayesâ rule.