Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Neighbourhood functions are key components of local-search algorithms such as Simulated Annealing or Threshold Accepting. These functions take a solution and return a slightly-modified copy of it, i.e. a neighbour. The package provides a function neighbourfun() that constructs such neighbourhood functions, based on parameters such as admissible ranges for elements in a solution. Supported are numeric and logical solutions. The algorithms were originally created for portfolio-optimisation applications, but can be used for other models as well. Several recipes for neighbour computations are taken from "Numerical Methods and Optimization in Finance" by M. Gilli, D. Maringer and E. Schumann (2019, ISBN:978-0128150658).
This package provides some functions to get Korean text sample from news articles in Naver which is popular news portal service <https://news.naver.com/> in Korea.
Replacement for nls() tools for working with nonlinear least squares problems. The calling structure is similar to, but much simpler than, that of the nls() function. Moreover, where nls() specifically does NOT deal with small or zero residual problems, nlmrt is quite happy to solve them. It also attempts to be more robust in finding solutions, thereby avoiding singular gradient messages that arise in the Gauss-Newton method within nls(). The Marquardt-Nash approach in nlmrt generally works more reliably to get a solution, though this may be one of a set of possibilities, and may also be statistically unsatisfactory. Added print and summary as of August 28, 2012.
Segmentation of short text sequences - like hashtags - into the separated words sequence, done with the use of dictionary, which may be built on custom corpus of texts. Unigram dictionary is used to find most probable sequence, and n-grams approach is used to determine possible segmentation given the text corpus.
Conduct a noncompartmental analysis with industrial strength. Some features are 1) Use of CDISC SDTM terms 2) Automatic or manual slope selection 3) Supporting both linear-up linear-down and linear-up log-down method 4) Interval(partial) AUCs with linear or log interpolation method * Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN:9198299107).
This package provides deterministic approximation methods for use with the nimble package. These include Laplace approximation and higher-order extension of Laplace approximation using adaptive Gauss-Hermite quadrature (AGHQ), plus nested deterministic approximation methods related to the INLA approach. Additional information is available in the NIMBLE User Manual and a nimbleQuad tutorial, both available at <https://r-nimble.org/documentation.html>.
This package provides a collection of data structures that represent volumetric brain imaging data. The focus is on basic data handling for 3D and 4D neuroimaging data. In addition, there are function to read and write NIFTI files and limited support for reading AFNI files.
Estimating the number of essential genes in a genome on the basis of data from a random transposon mutagenesis experiment, through the use of a Gibbs sampler. Lamichhane et al. (2003) <doi:10.1073/pnas.1231432100>.
Simplify the exploratory data analysis process for multiple network data sets with the help of hierarchical clustering, consensus clustering and heatmaps. Multiple network data consists of multiple disjoint networks that have common variables (e.g. ego networks). This package contains the necessary tools for exploring such data, from the data pre-processing stage to the creation of dynamic visualizations.
This package provides functions for revealing what happens when effect size estimates from previous studies are taken into account when evaluating each new dataset in a study sequence. The analyses can be conducted for cumulative meta-analyses and for Bayesian data analyses. The package contains sample data for a wide selection of research topics. Jointly considering previous findings along with new data is more likely to result in correct conclusions than does the traditional practice of not incorporating previous findings, which often results in a back and forth ping-pong of conclusions when evaluating a sequence of studies. O'Connor & Ermacora (2021, <doi:10.1037/cbs0000259>).
This package provides functions to fit linear mixed models based on convolutions of the generalized Laplace (GL) distribution. The GL mixed-effects model includes four special cases with normal random effects and normal errors (NN), normal random effects and Laplace errors (NL), Laplace random effects and normal errors (LN), and Laplace random effects and Laplace errors (LL). The methods are described in Geraci and Farcomeni (2020, Statistical Methods in Medical Research) <doi:10.1177/0962280220903763>.
Commodity pricing models are (systems of) stochastic differential equations that are utilized for the valuation and hedging of commodity contingent claims (i.e. derivative products on the commodity) and other commodity related investments. Commodity pricing models that capture market dynamics are of great importance to commodity market participants in order to exercise sound investment and risk-management strategies. Parameters of commodity pricing models are estimated through maximum likelihood estimation, using available term structure futures data of a commodity. NFCP (n-factor commodity pricing) provides a framework for the modeling, parameter estimation, probabilistic forecasting, option valuation and simulation of commodity prices through state space and Monte Carlo methods, risk-neutral valuation and Kalman filtering. NFCP allows the commodity pricing model to consist of n correlated factors, with both random walk and mean-reverting elements. The n-factor commodity pricing model framework was first presented in the work of Cortazar and Naranjo (2006) <doi:10.1002/fut.20198>. Examples presented in NFCP replicate the two-factor crude oil commodity pricing model presented in the prolific work of Schwartz and Smith (2000) <doi:10.1287/mnsc.46.7.893.12034> with the approximate term structure futures data applied within this study provided in the NFCP package.
This package contains functions useful for debugging, set operations on vectors, and UTC date and time functionality. It adds a few vector manipulation verbs to purrr and dplyr packages. It can also generate an R file to install and update packages to simplify deployment into production. The functions were developed at the data science firm Numeract LLC and are used in several packages and projects.
Calculating the density, cumulative distribution, quantile, and random number of neo-normal distribution. It also interfaces with the brms package, allowing the use of the neo-normal distribution as a custom family. This integration enables the application of various brms formulas for neo-normal regression. Modified to be Stable as Normal from Burr (MSNBurr), Modified to be Stable as Normal from Burr-IIa (MSNBurr-IIa), Generalized of MSNBurr (GMSNBurr), Jones-Faddy Skew-t, Fernandez-Osiewalski-Steel Skew Exponential Power, and Jones Skew Exponential Power distributions are supported. References: Choir, A. S. (2020).Unpublished Dissertation, Iriawan, N. (2000).Unpublished Dissertation, Rigby, R. A., Stasinopoulos, M. D., Heller, G. Z., & Bastiani, F. D. (2019) <doi:10.1201/9780429298547>.
Neural decoding is method of analyzing neural data that uses a pattern classifiers to predict experimental conditions based on neural activity. NeuroDecodeR is a system of objects that makes it easy to run neural decoding analyses. For more information on neural decoding see Meyers & Kreiman (2011) <doi:10.7551/mitpress/8404.003.0024>.
Implementation for nFunNN method, which is a novel nonlinear functional principal component analysis method using neural networks. The crucial function of this package is nFunNNmodel().
This package provides tools to support research on vowel covariation. Methods are provided to support Principal Component Analysis workflows (as in Brand et al. (2021) <doi:10.1016/j.wocn.2021.101096> and Wilson Black et al. (2023) <doi:10.1515/lingvan-2022-0086>).
This package provides a compact variation of the usual syntax of function declaration, in order to support tidyverse-style quasiquotation of a function's arguments and body.
Posterior sampling in several commonly used distributions using normalized power prior as described in Duan, Ye and Smith (2006) <doi:10.1002/env.752> and Ibrahim et.al. (2015) <doi:10.1002/sim.6728>. Sampling of the power parameter is achieved via either independence Metropolis-Hastings or random walk Metropolis-Hastings based on transformation.
Providing a common set of simplified web scraping tools for working with the NHS Data Dictionary <https://datadictionary.nhs.uk/data_elements_overview.html>. The intended usage is to access the data elements section of the NHS Data Dictionary to access key lookups. The benefits of having it in this package are that the lookups are the live lookups on the website and will not need to be maintained. This package was commissioned by the NHS-R community <https://nhsrcommunity.com/> to provide this consistency of lookups. The OpenSafely lookups have now been added <https://www.opencodelists.org/docs/>.
This package implements some risk measures for (financial) networks, such as DebtRank, Impact Susceptibility, Impact Diffusion and Impact Fluidity.
Implementation of forward selection based on cross-validated linear and logistic regression.
This comprehensive toolkit provide a consistent and extensible framework for working with missing values in vectors. The companion package tidyimpute provides similar functionality for list-like and table-like structures). Functions exist for detection, removal, replacement, imputation, recollection, etc. of NAs'.
This package provides a tool for drawing sassy UML (Unified Modeling Language) diagrams based on a simple syntax, see <https://www.nomnoml.com>. Supports styling, R Markdown and exporting diagrams in the PNG format. Note: you need a chromium based browser installed on your system.