Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The main goal of this package is drawing the membership function of the fuzzy p-value which is defined as a fuzzy set on the unit interval for three following problems: (1) testing crisp hypotheses based on fuzzy data, see Filzmoser and Viertl (2004) <doi:10.1007/s001840300269>, (2) testing fuzzy hypotheses based on crisp data, see Parchami et al. (2010) <doi:10.1007/s00362-008-0133-4>, and (3) testing fuzzy hypotheses based on fuzzy data, see Parchami et al. (2012) <doi:10.1007/s00362-010-0353-2>. In all cases, the fuzziness of data or / and the fuzziness of the boundary of null fuzzy hypothesis transported via the p-value function and causes to produce the fuzzy p-value. If the p-value is fuzzy, it is more appropriate to consider a fuzzy significance level for the problem. Therefore, the comparison of the fuzzy p-value and the fuzzy significance level is evaluated by a fuzzy ranking method in this package.
An implementation in Rcpp / RcppArmadillo of Partial Least Square algorithms. This package includes other functions to perform the double cross-validation and a fast correlation.
Transformations that allow obtaining a flat table from reports in text or Excel format that contain data in the form of pivot tables. They can be defined for a single report and applied to a set of reports.
This package provides methods for performing fMRI quality assurance (QA) measurements of test objects. Heavily based on the fBIRN procedures detailed by Friedman and Glover (2006) <doi:10.1002/jmri.20583>.
This package provides a streamlined, standard evaluation-based approach to multivariate function composition. Allows for chaining commands via a forward-pipe operator, %>%.
Statistical hypothesis testing methods for inferring model-free functional dependency using asymptotic chi-squared or exact distributions. Functional test statistics are asymmetric and functionally optimal, unique from other related statistics. Tests in this package reveal evidence for causality based on the causality-by- functionality principle. They include asymptotic functional chi-squared tests (Zhang & Song 2013) <doi:10.48550/arXiv.1311.2707>, an adapted functional chi-squared test (Kumar & Song 2022) <doi:10.1093/bioinformatics/btac206>, and an exact functional test (Zhong & Song 2019) <doi:10.1109/TCBB.2018.2809743> (Nguyen et al. 2020) <doi:10.24963/ijcai.2020/372>. The normalized functional chi-squared test was used by Best Performer NMSUSongLab in HPN-DREAM (DREAM8) Breast Cancer Network Inference Challenges (Hill et al. 2016) <doi:10.1038/nmeth.3773>. A function index (Zhong & Song 2019) <doi:10.1186/s12920-019-0565-9> (Kumar et al. 2018) <doi:10.1109/BIBM.2018.8621502> derived from the functional test statistic offers a new effect size measure for the strength of functional dependency, a better alternative to conditional entropy in many aspects. For continuous data, these tests offer an advantage over regression analysis when a parametric functional form cannot be assumed; for categorical data, they provide a novel means to assess directional dependency not possible with symmetrical Pearson's chi-squared or Fisher's exact tests.
This package provides functions to access and retrieve metadata from the Finna API <https://api.finna.fi/>, which aggregates content from Finnish archives, libraries, and museums.
This package provides a convenient and user-friendly interface to interact with the Firebase Authentication REST API': <https://firebase.google.com/docs/reference/rest/auth>. It enables R developers to integrate Firebase Authentication services seamlessly into their projects, allowing for user authentication, account management, and other authentication-related tasks.
This package provides functions to have visualization and clean-up of enriched gene ontologies (GO) terms, protein complexes and pathways (obtained from multiple databases) using ConsensusPathDB from gene set over-expression analysis. Performs clustering of pathway based on similarity of over-expressed gene sets and visualizations similar to Ingenuity Pathway Analysis (IPA) when up and down regulated genes are known. The methods are described in a paper currently submitted by Orecchioni et al, 2020 in Nanoscale.
This package provides a structured profile likelihood algorithm for the logistic fixed effects model and an approximate expectation maximization (EM) algorithm for the logistic mixed effects model. Based on He, K., Kalbfleisch, J.D., Li, Y. and Li, Y. (2013) <doi:10.1007/s10985-013-9264-6>.
This package implements numerical entropy-pooling for portfolio construction and scenario analysis as described in Meucci, Attilio (2008) and Meucci, Attilio (2010) <doi:10.2139/ssrn.1696802>.
With no external dependencies and support for 335 languages; all languages spoken by more than one million speakers. Franc is a port of the JavaScript project of the same name, see <https://github.com/wooorm/franc>.
Inference methods for factor copula models for continuous data in Krupskii and Joe (2013) <doi:10.1016/j.jmva.2013.05.001>, Krupskii and Joe (2015) <doi:10.1016/j.jmva.2014.11.002>, Fan and Joe (2024) <doi:10.1016/j.jmva.2023.105263>, one factor truncated vine models in Joe (2018) <doi:10.1002/cjs.11481>, and Gaussian oblique factor models. Functions for computing tail-weighted dependence measures in Lee, Joe and Krupskii (2018) <doi:10.1080/10485252.2017.1407414> and estimating tail dependence parameter.
Implementation of dynamic principal component analysis (DPCA), simulation of VAR and VMA processes and frequency domain tools. These frequency domain methods for dimensionality reduction of multivariate time series were introduced by David Brillinger in his book Time Series (1974). We follow implementation guidelines as described in Hormann, Kidzinski and Hallin (2016), Dynamic Functional Principal Component <doi:10.1111/rssb.12076>.
In Australia, a financial year (or fiscal year) is the period from 1 July to 30 June of the following calendar year. As such, many databases need to represent and validate financial years efficiently. While the use of integer years with a convention that they represent the year ending is common, it may lead to ambiguity with calendar years. On the other hand, string representations may be too inefficient and do not easily admit arithmetic operations. This package tries to make validation of financial years quicker while retaining clarity.
Perform factorial analysis with a menu and draw graphs interactively thanks to FactoMineR and a Shiny application.
This package contains the methods proposed by Geyer and Meeden (2005)<doi:10.1214/088342305000000340> and Trigo et al. (2025) <doi:10.47749/T/UNICAMP.2025.1500297> to construct fuzzy confidence intervals. Compute and plot the fuzzy membership functions of the methods, and the expected length compared with the infimum.
Using the idea of least trimmed square, it could automatically detects and removes outliers from data before estimating the coefficients. It is a robust machine learning tool which can be applied to gene-expression deconvolution technique. Yuning Hao, Ming Yan, Blake R. Heath, Yu L. Lei and Yuying Xie (2019) <doi:10.1101/358366>.
Shed light on black box machine learning models by the help of model performance, variable importance, global surrogate models, ICE profiles, partial dependence (Friedman J. H. (2001) <doi:10.1214/aos/1013203451>), accumulated local effects (Apley D. W. (2016) <doi:10.48550/arXiv.1612.08468>), further effects plots, interaction strength, and variable contribution breakdown (Gosiewska and Biecek (2019) <doi:10.48550/arXiv.1903.11420>). All tools are implemented to work with case weights and allow for stratified analysis. Furthermore, multiple flashlights can be combined and analyzed together.
The user can directly compute and display false discovery rates from inputted p-values or z-scores under a variety of assumptions. p.fdr() computes FDRs, adjusted p-values and decision reject vectors from inputted p-values or z-values. get.pi0() estimates the proportion of data that are truly null. plot.p.fdr() plots the FDRs, adjusted p-values, and the raw p-values points against their rejection threshold lines.
Calculates marginal effects based on logistic model objects such as glm or speedglm at the average (default) or at given values using finite differences. It also returns confidence intervals for said marginal effects and the p-values, which can easily be used as input in stargazer. The function only returns the essentials and is therefore much faster but not as detailed as other functions available to calculate marginal effects. As a result, it is highly suitable for large datasets for which other packages may require too much time or calculating power.
Specialized solvers for combinatorial optimization problems in the Subset Sum family. The solvers differ from the mainstream in the options of (i) restricting subset size, (ii) bounding subset elements, (iii) mining real-value multisets with predefined subset sum errors, (iv) finding one or more subsets in limited time. A novel algorithm for mining the one-dimensional Subset Sum induced algorithms for the multi-Subset Sum and the multidimensional Subset Sum. The multi-threaded framework for the latter offers exact algorithms to the multidimensional Knapsack and the Generalized Assignment problems. Historical updates include (a) renewed implementation of the multi-Subset Sum, multidimensional Knapsack and Generalized Assignment solvers; (b) availability of bounding solution space in the multidimensional Subset Sum; (c) fundamental data structure and architectural changes for enhanced cache locality and better chance of SIMD vectorization; (d) option of mapping floating-point instance to compressed 64-bit integer instance with user-controlled precision loss, which could yield substantial speedup due to the dimension reduction and efficient compressed integer arithmetic via bit-manipulations; (e) distributed computing infrastructure for multidimensional subset sum; (f) arbitrary-precision zero-margin-of-error multidimensional Subset Sum accelerated by a simplified Bloom filter. The package contains a copy of xxHash from <https://github.com/Cyan4973/xxHash>. Package vignette (<doi:10.48550/arXiv.1612.04484>) detailed a few historical updates. Functions prefixed with aux (auxiliary) are independent implementations of published algorithms for solving optimization problems less relevant to Subset Sum.
This package provides tools and features for "Exploratory Landscape Analysis (ELA)" of single-objective continuous optimization problems. Those features are able to quantify rather complex properties, such as the global structure, separability, etc., of the optimization problems.
Easy installation, loading and management, of high-performance packages for statistical computing and data manipulation in R. The core fastverse consists of 4 packages: data.table', collapse', kit and magrittr', that jointly only depend on Rcpp'. The fastverse can be freely and permanently extended with additional packages, both globally or for individual projects. Separate package verses can also be created. Fast packages for many common tasks such as time series, dates and times, strings, spatial data, statistics, data serialization, larger-than-memory processing, and compilation of R code are listed in the README file: <https://github.com/fastverse/fastverse#suggested-extensions>.