Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Aims to support all features of the system credential store, including non-portable ones. Supports Keychain on macOS', and Credential Manager on Windows'. See the keyring package if you need a portable API'.
Distance based bipartite matching using minimum cost flow, oriented to matching of treatment and control groups in observational studies ('Hansen and Klopfer 2006 <doi:10.1198/106186006X137047>). Routines are provided to generate distances from generalised linear models (propensity score matching), formulas giving variables on which to limit matched distances, stratified or exact matching directives, or calipers, alone or in combination.
Computes confidence regions on the location of response surface optima. Response surface models can be up to cubic polynomial models in up to 5 controllable factors, or Thin Plate Spline models in 2 controllable factors.
The identity provider ['OneLogin']<http://onelogin.com> is used for authentication via Single Sign On (SSO). This package provides an R interface to their API.
Evaluates the Owen Q-function for an integer value of the degrees of freedom, by applying Owen's algorithm (1965) <doi:10.1093/biomet/52.3-4.437>. It is useful for the calculation of the power of equivalence tests.
This package implements a simulation study to assess the strengths and weaknesses of causal inference methods for estimating policy effects using panel data. See Griffin et al. (2021) <doi:10.1007/s10742-022-00284-w> and Griffin et al. (2022) <doi:10.1186/s12874-021-01471-y> for a description of our methods.
An interface for interacting with OSF (<https://osf.io>). osfr enables you to access open research materials and data, or create and manage your own private or public projects.
This package provides a DBI-compatible interface to ODBC databases.
Calculating the stability of random forest with certain numbers of trees. The non-linear relationship between stability and numbers of trees is described using a logistic regression model and used to estimate the optimal number of trees.
Likelihood based optimal partitioning and indicator species analysis. Finding the best binary partition for each species based on model selection, with the possibility to take into account modifying/confounding variables as described in Kemencei et al. (2014) <doi:10.1556/ComEc.15.2014.2.6>. The package implements binary and multi-level response models, various measures of uncertainty, Lorenz-curve based thresholding, with native support for parallel computations.
It implements the online Bayesian methods for change point analysis. It can also perform missing data imputation with methods from VIM'. The reference is Yigiter A, Chen J, An L, Danacioglu N (2015) <doi:10.1080/02664763.2014.1001330>. The link to the package is <https://CRAN.R-project.org/package=onlineBcp>.
An RStudio addin to assist with removing objects from the global environment. Features include removing objects according to name patterns and object type. During the course of an analysis, temporary objects are often created and this tool assists with removing them quickly. This can be useful when memory management within R is important.
This package implements the orthogonal reparameterization approach recommended by Lancaster (2002) to estimate dynamic panel models with fixed effects (and optionally: panel specific intercepts). The approach uses a likelihood-based estimator and produces estimates that are asymptotically unbiased as N goes to infinity, with a T as low as 2.
We proposes a framework that provides real time support for early detection of anomalous series within a large collection of streaming time series data. By definition, anomalies are rare in comparison to a system's typical behaviour. We define an anomaly as an observation that is very unlikely given the forecast distribution. The algorithm first forecasts a boundary for the system's typical behaviour using a representative sample of the typical behaviour of the system. An approach based on extreme value theory is used for this boundary prediction process. Then a sliding window is used to test for anomalous series within the newly arrived collection of series. Feature based representation of time series is used as the input to the model. To cope with concept drift, the forecast boundary for the system's typical behaviour is updated periodically. More details regarding the algorithm can be found in Talagala, P. D., Hyndman, R. J., Smith-Miles, K., et al. (2019) <doi:10.1080/10618600.2019.1617160>.
Simplified odds ratio calculation of GAM(M)s & GLM(M)s. Provides structured output (data frame) of all predictors and their corresponding odds ratios and confident intervals for further analyses. It helps to avoid false references of predictors and increments by specifying these parameters in a list instead of using exp(coef(model)) (standard approach of odds ratio calculation for GLMs) which just returns a plain numeric output. For GAM(M)s, odds ratio calculation is highly simplified with this package since it takes care of the multiple predict() calls of the chosen predictor while holding other predictors constant. Also, this package allows odds ratio calculation of percentage steps across the whole predictor distribution range for GAM(M)s. In both cases, confident intervals are returned additionally. Calculated odds ratio of GAM(M)s can be inserted into the smooth function plot.
After develop a ODK <https://opendatakit.org/> frame, we can link the frame to Google Sheets <https://www.google.com/sheets/about/> and collect data through Android <https://www.android.com/>. This data uploaded to a Google sheets'. odk2spss() function help to convert the odk frame into SPSS <https://www.ibm.com/analytics/us/en/technology/spss/> frame. Also able to add downloaded Google sheets data or read data from Google sheets by using ODK frame submission_url'.
This package provides clustering of genes with similar dose response (or time course) profiles. It implements the method described by Lin et al. (2012).
This package provides an Interface to Open Collaboration Services OCS (<https://www.open-collaboration-services.org/>) REST API.
Social media sites often embed cards when links are shared, based on metadata in the Open Graph Protocol (<https://ogp.me/>). This supports extracting that metadata from a website. It further allows for the creation of tags to add to a website to support the Open Graph Protocol and provides a list of the standard tags and their required properties.
Set of tools to generate samples of k-th order statistics and others quantities of interest from new families of distributions. The main references for this package are: C. Kleiber and S. Kotz (2003) Statistical size distributions in economics and actuarial sciences; Gentle, J. (2009), Computational Statistics, Springer-Verlag; Naradajah, S. and Rocha, R. (2016), <DOI:10.18637/jss.v069.i10> and Stasinopoulos, M. and Rigby, R. (2015), <DOI:10.1111/j.1467-9876.2005.00510.x>. The families of distributions are: Benini distributions, Burr distributions, Dagum distributions, Feller-Pareto distributions, Generalized Pareto distributions, Inverse Pareto distributions, The Inverse Paralogistic distributions, Marshall-Olkin G distributions, exponentiated G distributions, beta G distributions, gamma G distributions, Kumaraswamy G distributions, generalized beta G distributions, beta extended G distributions, gamma G distributions, gamma uniform G distributions, beta exponential G distributions, Weibull G distributions, log gamma G I distributions, log gamma G II distributions, exponentiated generalized G distributions, exponentiated Kumaraswamy G distributions, geometric exponential Poisson G distributions, truncated-exponential skew-symmetric G distributions, modified beta G distributions, exponentiated exponential Poisson G distributions, Poisson-inverse gaussian distributions, Skew normal type 1 distributions, Skew student t distributions, Singh-Maddala distributions, Sinh-Arcsinh distributions, Sichel distributions, Zero inflated Poisson distributions.
Incorporates functions for image preprocessing, filtering and image recognition. The package takes advantage of RcppArmadillo to speed up computationally intensive functions. The histogram of oriented gradients descriptor is a modification of the findHOGFeatures function of the SimpleCV computer vision platform, the average_hash(), dhash() and phash() functions are based on the ImageHash python library. The Gabor Feature Extraction functions are based on Matlab code of the paper, "CloudID: Trustworthy cloud-based and cross-enterprise biometric identification" by M. Haghighat, S. Zonouz, M. Abdel-Mottaleb, Expert Systems with Applications, vol. 42, no. 21, pp. 7905-7916, 2015, <doi:10.1016/j.eswa.2015.06.025>. The SLIC and SLICO superpixel algorithms were explained in detail in (i) "SLIC Superpixels Compared to State-of-the-art Superpixel Methods", Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Suesstrunk, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, num. 11, p. 2274-2282, May 2012, <doi:10.1109/TPAMI.2012.120> and (ii) "SLIC Superpixels", Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Suesstrunk, EPFL Technical Report no. 149300, June 2010.
Geocode with the OpenCage API, either from place name to longitude and latitude (forward geocoding) or from longitude and latitude to the name and address of a location (reverse geocoding), see <https://opencagedata.com/>.
Developed to help researchers who need to model the kinetics of carbon dioxide (CO2) production in alcoholic fermentation of wines, beers and other fermented products. The following models are available for modeling the carbon dioxide production curve as a function of time: 5PL, Gompertz and 4PL. This package has different functions, which applied can: perform the modeling of the data obtained in the fermentation and return the coefficients, analyze the model fit and return different statistical metrics, and calculate the kinetic parameters: Maximum production of carbon dioxide; Maximum rate of production of carbon dioxide; Moment in which maximum fermentation rate occurs; Duration of the latency phase for carbon dioxide production; Carbon dioxide produced until maximum fermentation rate occurs. In addition, a function that generates graphs with the observed and predicted data from the models, isolated and combined, is available. Gava, A., Borsato, D., & Ficagna, E. (2020)."Effect of mixture of fining agents on the fermentation kinetics of base wine for sparkling wine production: Use of methodology for modeling". <doi:10.1016/j.lwt.2020.109660>.
The Open Data Format (ODF) is a new, non-proprietary, multilingual, metadata enriched, and zip-compressed data format with metadata structured in the Data Documentation Initiative (DDI) Codebook standard. This package allows reading and writing of data files in the Open Data Format (ODF) in R, and displaying metadata in different languages. For further information on the Open Data Format, see <https://opendataformat.github.io/>.