Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Given a network (e.g. a food web), estimates several network indices. These include: Ascendency network indices, Direct and indirect dependencies, Effective measures, Environ network indices, General network indices, Pathway analysis, Network uncertainty indices and constraint efficiencies and the trophic level and omnivory indices of food webs.
Given a failure type, the function computes covariate-specific probability of failure over time and covariate-specific conditional hazard rate based on possibly right-censored competing risk data. Specifically, it computes the non-parametric maximum-likelihood estimates of these quantities and their asymptotic variances in a semi-parametric mixture model for competing-risks data, as described in Chang et al. (2007a).
Noninferiority tests for difference in failure rates at a prespecified control rate or prespecified time. For details, see Fay and Follmann, 2016 <DOI:10.1177/1740774516654861>.
This package provides a bootstrap method for Respondent-Driven Sampling (RDS) that relies on the underlying structure of the RDS network to estimate uncertainty.
Density, distribution function, quantile function and random generation for the Nakagami distribution of Nakagami (1960) <doi:10.1016/B978-0-08-009306-2.50005-4>.
Estimate the NNT using the proposed method in Yang and Yin's paper (2019) <doi:10.1371/journal.pone.0223301>, in which the NNT-RMST (number needed to treat based on the restricted mean survival time) is defined as the RMST (restricted mean survival time) in the control group divided by the difference in RMSTs between the treatment and control groups up to a chosen time t.
Counts syllables in character vectors for English words. Imputes syllables as the number of vowel sequences for words not found.
Base package for Neuroconductor', which includes many helper functions that interact with objects of class nifti', implemented by package oro.nifti', for reading/writing and also other manipulation functions.
Digital map data of Japan for choropleth mapping, including a circle cartogram.
Utility functions that may be of general interest but are specifically required by the NeuroAnatomy Toolbox ('nat'). Includes functions to provide a basic make style system to update files based on timestamp information, file locking and touch utility. Convenience functions for working with file paths include abs2rel', split_path and common_path'. Finally there are utility functions for working with zip and gzip files including integrity tests.
Minimize a differentiable function subject to all the variables being non-negative (i.e. >= 0), using a Conjugate-Gradient algorithm based on a modified Polak-Ribiere-Polyak formula as described in (Li, Can, 2013, <https://www.hindawi.com/journals/jam/2013/986317/abs/>).
This package provides tools for analyzing spatial data, especially non- Gaussian areal data. The current version supports the sparse restricted spatial regression model of Hughes and Haran (2013) <DOI:10.1111/j.1467-9868.2012.01041.x>, the centered autologistic model of Caragea and Kaiser (2009) <DOI:10.1198/jabes.2009.07032>, and the Bayesian spatial filtering model of Hughes (2017) <arXiv:1706.04651>.
Similarity measures for hierarchical clustering of objects characterized by nominal (categorical) variables. Evaluation criteria for nominal data clustering.
Miscellaneous R functions developed as collateral damage over the course of work in statistical and scientific computing for research. These include, for example, utilities that supplement existing idiosyncrasies of the R language, extend existing plotting functionality and aesthetics, help prepare data objects for imputation, and extend access to command line tools and systems-level information.
This is the R API for the nfer formalism (<http://nfer.io/>). nfer was developed to specify event stream abstractions for spacecraft telemetry such as the Mars Science Laboratory. Users write rules using a syntax that borrows heavily from Allen's Temporal Logic that, when applied to an event stream, construct a hierarchy of temporal intervals with data. The R API supports loading rules from a file or mining them from historical data. Traces of events or pools of intervals are provided as data frames.
Performing drug response analyses and IC50 estimations using n-Parameter logistic regression. Can also be applied to proliferation analyses.
This package provides functionality for performing Nearest Centroid (NC) Sampling. The NC sampling procedure was developed for forestry applications and selects plots for ground measurement so as to maximize the efficiency of imputation estimates. It uses multiple auxiliary variables and multivariate clustering to search for an optimal sample. Further details are given in Melville G. & Stone C. (2016) <doi:10.1080/00049158.2016.1218265>.
Nonparametric methods for smoothing regression function data with change-points, utilizing range kernels for iterative and anisotropic smoothing methods. For further details, see the paper by John R.J. Thompson (2024) <doi:10.1080/02664763.2024.2352759>.
This package provides efficient methods to compute co-occurrence matrices, pointwise mutual information (PMI) and singular value decomposition (SVD). In the biomedical and clinical settings, one challenge is the huge size of databases, e.g. when analyzing data of millions of patients over tens of years. To address this, this package provides functions to efficiently compute monthly co-occurrence matrices, which is the computational bottleneck of the analysis, by using the RcppAlgos package and sparse matrices. Furthermore, the functions can be called on SQL databases, enabling the computation of co-occurrence matrices of tens of gigabytes of data, representing millions of patients over tens of years. Partly based on Hong C. (2021) <doi:10.1038/s41746-021-00519-z>.
This package provides functions to access and download data from various NASA APIs <https://api.nasa.gov/#browseAPI>, including: Astronomy Picture of the Day (APOD), Mars Rover Photos, Earth Polychromatic Imaging Camera (EPIC), Near Earth Object Web Service (NeoWs), Earth Observatory Natural Event Tracker (EONET), and NASA Earthdata CMR Search. Most endpoints require a NASA API key for access. Data is retrieved, cleaned for analysis, and returned in a dataframe-friendly format.
An implementation of the National Information Platforms for Nutrition or NiPN's analytic methods for assessing quality of anthropometric datasets that include measurements of weight, height or length, middle upper arm circumference, sex and age. The focus is on anthropometric status but many of the presented methods could be applied to other variables.
Analysis of multivariate data with two-way completely randomized factorial design. The analysis is based on fully nonparametric, rank-based methods and uses test statistics based on the Dempster's ANOVA, Wilk's Lambda, Lawley-Hotelling and Bartlett-Nanda-Pillai criteria. The multivariate response is allowed to be ordinal, quantitative, binary or a mixture of the different variable types. The package offers two functions performing the analysis, one for small and the other for large sample sizes. The underlying methodology is largely described in Bathke and Harrar (2016) <doi:10.1007/978-3-319-39065-9_7> and in Munzel and Brunner (2000) <doi:10.1016/S0378-3758(99)00212-8> and in Kiefel and Bathke (2022) <doi:10.1515/stat-2022-0112>.
Offers a rich and diverse collection of datasets focused on the brain, nervous system, and related disorders. The package includes clinical, experimental, neuroimaging, behavioral, cognitive, and simulated data on conditions such as Parkinson's disease, Alzheimer's disease, dementia, epilepsy, schizophrenia, autism spectrum disorder, attention deficit, hyperactivity disorder, Tourette's syndrome, traumatic brain injury, gliomas, migraines, headaches, sleep disorders, concussions, encephalitis, subarachnoid hemorrhage, and mental health conditions. Datasets cover structural and functional brain data, cross-sectional and longitudinal MRI imaging studies, neurotransmission, gene expression, cognitive performance, intelligence metrics, sleep deprivation effects, treatment outcomes, brain-body relationships across species, neurological injury patterns, and acupuncture interventions. Data sources include peer-reviewed studies, clinical trials, military health records, sports injury databases, and international comparative studies. Designed for researchers, neuroscientists, clinicians, psychologists, data scientists, and students, this package facilitates exploratory data analysis, statistical modeling, and hypothesis testing in neuroscience and neuroepidemiology.
Analyzes data involving imprecise and vague information. Provides summary statistics and describes the characteristics of neutrosophic data, as defined by Florentin Smarandache (2013).<ISBN:9781599732749>.