Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This is a pure dummy interfaces package which mirrors MsSparkUtils APIs <https://learn.microsoft.com/en-us/azure/synapse-analytics/spark/microsoft-spark-utilities?pivots=programming-language-r> of Azure Synapse Analytics <https://learn.microsoft.com/en-us/azure/synapse-analytics/> for R users, customer of Azure Synapse can download this package from CRAN for local development.
This package provides a graphical display of results from network meta-analysis (NMA). It is suitable for outcomes like odds ratio (OR), risk ratio (RR), risk difference (RD) and standardized mean difference (SMD). It also has an option to visually display and compare the surface under the cumulative ranking (SUCRA) of different treatments.
Network trees recursively partition the data with respect to covariates. Two network tree algorithms are available: model-based trees based on a multivariate normal model and nonparametric trees based on covariance structures. After partitioning, correlation-based networks (psychometric networks) can be fit on the partitioned data. For details see Jones, Mair, Simon, & Zeileis (2020) <doi:10.1007/s11336-020-09731-4>.
Draw nested extreme value random variables, which are the variables that appear in the latent variable formulation of the nested logit model.
Multiple and generalized nonparametric regression using smoothing spline ANOVA models and generalized additive models, as described in Helwig (2020) <doi:10.4135/9781526421036885885>. Includes support for Gaussian and non-Gaussian responses, smoothers for multiple types of predictors (including random intercepts), interactions between smoothers of mixed types, eight different methods for smoothing parameter selection, and flexible tools for diagnostics, inference, and prediction.
This package provides functions to produce advanced ascii graphics, directly to the terminal window. This package utilizes the txtplot() function from the txtplot package, to produce text-based histograms, empirical cumulative distribution function plots, scatterplots with fitted and regression lines, quantile plots, density plots, image plots, and contour plots.
This package provides a minimal package for downloading data from GitHub repositories of the nflverse project.
Library to plot performance profiles (Dolan and More (2002) <doi:10.1007/s101070100263>) and nested performance profiles (Hekmati and Mirhajianmoghadam (2019) <doi:10.19139/soic-2310-5070-679>) for a given data frame.
Assist novice developers when preparing a single package or a set of integrated packages to submit to CRAN. Provide additional resources to facilitate the automation of the following individual or batch processing: check local source packages; build local .tar.gz source files; install packages from local .tar.gz files; detect conflicts between function names in the environment. The additional resources include determining the identity and ordering of the packages to process when updating an imported package.
This package provides efficient methods to compute co-occurrence matrices, pointwise mutual information (PMI) and singular value decomposition (SVD). In the biomedical and clinical settings, one challenge is the huge size of databases, e.g. when analyzing data of millions of patients over tens of years. To address this, this package provides functions to efficiently compute monthly co-occurrence matrices, which is the computational bottleneck of the analysis, by using the RcppAlgos package and sparse matrices. Furthermore, the functions can be called on SQL databases, enabling the computation of co-occurrence matrices of tens of gigabytes of data, representing millions of patients over tens of years. Partly based on Hong C. (2021) <doi:10.1038/s41746-021-00519-z>.
This package provides a collection of NASCAR race, driver, owner and manufacturer data across the three major NASCAR divisions: NASCAR Cup Series, NASCAR Xfinity Series, and NASCAR Craftsman Truck Series. The curated data begins with the 1949 season and extends through the end of the 2024 season. Explore race, season, or career performance for drivers, teams, and manufacturers throughout NASCAR's history. Data was sourced with permission from DriverAverages.com.
Especially when cross-sectional data are observational, effects of treatment selection bias and confounding are best revealed by using Nonparametric and Unsupervised methods to "Design" the analysis of the given data ...rather than the collection of "designed data". Specifically, the "effect-size distribution" that best quantifies a potentially causal relationship between a numeric y-Outcome variable and either a binary t-Treatment or continuous e-Exposure variable needs to consist of BLOCKS of relatively well-matched experimental units (e.g. patients) that have the most similar X-confounder characteristics. Since our NU Learning approach will form BLOCKS by "clustering" experimental units in confounder X-space, the implicit statistical model for learning is One-Way ANOVA. Within Block measures of effect-size are then either [a] LOCAL Treatment Differences (LTDs) between Within-Cluster y-Outcome Means ("new" minus "control") when treatment choice is Binary or else [b] LOCAL Rank Correlations (LRCs) when the e-Exposure variable is numeric with (hopefully many) more than two levels. An Instrumental Variable (IV) method is also provided so that Local Average y-Outcomes (LAOs) within BLOCKS may also contribute information for effect-size inferences when X-Covariates are assumed to influence Treatment choice or Exposure level but otherwise have no direct effects on y-Outcomes. Finally, a "Most-Like-Me" function provides histograms of effect-size distributions to aid Doctor-Patient (or Researcher-Society) communications about Heterogeneous Outcomes. Obenchain and Young (2013) <doi:10.1080/15598608.2013.772821>; Obenchain, Young and Krstic (2019) <doi:10.1016/j.yrtph.2019.104418>.
Naive discriminative learning implements learning and classification models based on the Rescorla-Wagner equations and their equilibrium equations.
Simple interface routines to facilitate the handling of network objects with complex intertemporal data. This is a part of the "statnet" suite of packages for network analysis.
These routines create multiple imputations of missing at random categorical data, and create multiply imputed synthesis of categorical data, with or without structural zeros. Imputations and syntheses are based on Dirichlet process mixtures of multinomial distributions, which is a non-parametric Bayesian modeling approach that allows for flexible joint modeling, described in Manrique-Vallier and Reiter (2014) <doi:10.1080/10618600.2013.844700>.
Given a failure type, the function computes covariate-specific probability of failure over time and covariate-specific conditional hazard rate based on possibly right-censored competing risk data. Specifically, it computes the non-parametric maximum-likelihood estimates of these quantities and their asymptotic variances in a semi-parametric mixture model for competing-risks data, as described in Chang et al. (2007a).
This package provides a cross-platform interface to prevent the operating system from going to sleep while long-running R tasks are executing.
This package performs network meta-analysis using integrated nested Laplace approximations ('INLA') which is described in Guenhan, Held, and Friede (2018) <doi:10.1002/jrsm.1285>. Includes methods to assess the heterogeneity and inconsistency in the network. Contains more than ten different network meta-analysis dataset. INLA package can be obtained from <https://www.r-inla.org>.
Palettes generated from NBA jersey colorways.
This package provides automated methods for generating initial parameter estimates in population pharmacokinetic modeling. The pipeline integrates adaptive single-point methods, naive pooled graphic approaches, noncompartmental analysis methods, and parameter sweeping across pharmacokinetic models. It estimates residual unexplained variability using either data-driven or fixed-fraction approaches and assigns pragmatic initial values for inter-individual variability. These strategies are designed to improve model robustness and convergence in nlmixr2 workflows. For more details see Huang Z, Fidler M, Lan M, Cheng IL, Kloprogge F, Standing JF (2025) <doi:10.1007/s10928-025-10000-z>.
Free United Kingdom National Health Service (NHS) and other healthcare, or population health-related data for education and training purposes. This package contains synthetic data based on real healthcare datasets, or cuts of open-licenced official data. This package exists to support skills development in the NHS-R community: <https://nhsrcommunity.com/>.
Six growth models are fitted using non-linear least squares. These are the Richards, the 3, 4 and 5 parameter logistic, the Gompetz and the Weibull growth models. Reference: Reddy T., Shkedy Z., van Rensburg C. J., Mwambi H., Debba P., Zuma K. and Manda, S. (2021). "Short-term real-time prediction of total number of reported COVID-19 cases and deaths in South Africa: a data driven approach". BMC medical research methodology, 21(1), 1-11. <doi:10.1186/s12874-020-01165-x>.
Neighbour-balanced designs ensure that no treatment is disadvantaged unfairly by its surroundings. The treatment allocation in these designs is such that every treatment appears equally often as a neighbour with every other treatment. Neighbour Balanced Designs are employed when there is a possibility of neighbour effects from treatments used in adjacent experimental units. In the literature, a vast number of such designs have been developed. This package generates some efficient neighbour balanced block designs which are balanced and partially variance balanced for estimating the contrast pertaining to direct and neighbour effects, as well as provides a function for analysing the data obtained from such trials (Azais, J.M., Bailey, R.A. and Monod, H. (1993). "A catalogue of efficient neighbour designs with border plots". Biometrics, 49, 1252-1261 ; Tomar, J. S., Jaggi, Seema and Varghese, Cini (2005)<DOI: 10.1080/0266476042000305177>. "On totally balanced block designs for competition effects"). This package contains functions named nbbd1(),nbbd2(),nbbd3(),pnbbd1() and pnbbd2() which generates neighbour balanced block designs within a specified range of number of treatment (v). It contains another function named anlys()for performing the analysis of data generated from such trials.
Data sets and nonlinear regression models dedicated to predictive microbiology.