Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimates the shape and volume of high-dimensional datasets and performs set operations: intersection / overlap, union, unique components, inclusion test, and hole detection. Uses stochastic geometry approach to high-dimensional kernel density estimation, support vector machine delineation, and convex hull generation. Applications include modeling trait and niche hypervolumes and species distribution modeling.
The Ljung-Box test is one of the most important tests for time series diagnostics and model selection. The Hassani SACF (Sum of the Sample Autocorrelation Function) Theorem , however, indicates that the sum of sample autocorrelation function is always fix for any stationary time series with arbitrary length. This package confirms for sensitivity of the Ljung-Box test to the number of lags involved in the test and therefore it should be used with extra caution. The Hassani SACF Theorem has been described in : Hassani, Yeganegi and M. R. (2019) <doi:10.1016/j.physa.2018.12.028>.
Events from individual hydrologic time series are extracted, and events are matched across multiple time series. The package has been applied in studies such as Wasko and Guo (2022) <doi:10.1002/hyp.14563> and Mohammadpour Khoie, Guo and Wasko (2025) <doi:10.1016/j.envsoft.2025.106521>.
Implementing Hierarchical Bayesian Small Area Estimation models using the brms package as the computational backend. The modeling framework follows the methodological foundations described in area-level models. This package is designed to facilitate a principled Bayesian workflow, enabling users to conduct prior predictive checks, model fitting, posterior predictive checks, model comparison, and sensitivity analysis in a coherent and reproducible manner. It supports flexible model specifications via brms and promotes transparency in model development, aligned with the recommendations of modern Bayesian data analysis practices, implementing methods described in Rao and Molina (2015) <doi:10.1002/9781118735855>.
Error type I and Optimal critical values to test statistical hypothesis based on Neyman-Pearson Lemma and Likelihood ratio test based on random samples from several distributions. The families of distributions are Bernoulli, Exponential, Geometric, Inverse Normal, Normal, Gamma, Gumbel, Lognormal, Poisson, and Weibull. This package is an ideal resource to help with the teaching of Statistics. The main references for this package are Casella G. and Berger R. (2003,ISBN:0-534-24312-6 , "Statistical Inference. Second Edition", Duxbury Press) and Hogg, R., McKean, J., and Craig, A. (2019,ISBN:013468699, "Introduction to Mathematical Statistic. Eighth edition", Pearson).
The HBV hydrological model (Bergström, S. and Lindström, G., (2015) <doi:10.1002/hyp.10510>) has been split in modules to allow the user to build his/her own model. This version was developed by the author in IANIGLA-CONICET (Instituto Argentino de Nivologia, Glaciologia y Ciencias Ambientales - Consejo Nacional de Investigaciones Cientificas y Tecnicas) for hydroclimatic studies in the Andes. HBV.IANIGLA incorporates routines for clean and debris covered glacier melt simulations.
This package provides a tool for Hierarchical Climate Regionalization applicable to any correlation-based clustering. It adds several features and a new clustering method (called, regional linkage) to hierarchical clustering in R ('hclust function in stats library): data regridding, coarsening spatial resolution, geographic masking, contiguity-constrained clustering, data filtering by mean and/or variance thresholds, data preprocessing (detrending, standardization, and PCA), faster correlation function with preliminary big data support, different clustering methods, hybrid hierarchical clustering, multivariate clustering (MVC), cluster validation, visualization of regionalization results, and exporting region map and mean timeseries into NetCDF-4 file. The technical details are described in Badr et al. (2015) <doi:10.1007/s12145-015-0221-7>.
Facilitates building topology preserving maps for data analysis.
Uses support vector machines to identify a perfectly separating hyperplane (linear or curvilinear) between two entities in high-dimensional space. If this plane exists, the entities do not overlap. Applications include overlap detection in morphological, resource or environmental dimensions. More details can be found in: Brown et al. (2020) <doi:10.1111/2041-210X.13363> .
Builds and optimizes Hopfield artificial neural networks (Hopfield, 1982, <doi:10.1073/pnas.79.8.2554>). One-layer and three-layer models are implemented. The energy of the Hopfield network is minimized with formula from Krotov and Hopfield (2016, <doi:10.48550/ARXIV.1606.01164>). Optimization (supervised learning) is done through a gradient-based method. Classification is done with S3 methods predict(). Parallelization with OpenMP is used if available during compilation.
The Harmonised Index of Consumer Prices (HICP) is the key economic figure to measure inflation in the euro area. The methodology underlying the HICP is documented in the HICP Methodological Manual (<https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/w/ks-gq-24-003>). Based on the manual, this package provides functions to access and work with HICP data from Eurostat's public database (<https://ec.europa.eu/eurostat/data/database>).
Simulates stochastic hybrid models for transmission of infectious diseases in dynamic networks. It is a metapopulation model in which each node in the network is a sub-population and disease spreads within nodes and among them, combining two approaches: stochastic simulation algorithm (<doi:10.1146/annurev.physchem.58.032806.104637>) and individual-based approach, respectively. Equations that models spread within nodes are customizable and there are two link types among nodes: migration and influence (commuting). More information in Fernando S. Marques, Jose H. H. Grisi-Filho, Marcos Amaku et al. (2020) <doi:10.18637/jss.v094.i06>.
Offers a convenient way to compute parameters in the framework of the theory of vocational choice introduced by J.L. Holland, (1997). A comprehensive summary to this theory of vocational choice is given in Holland, J.L. (1997). Making vocational choices. A theory of vocational personalities and work environments. Lutz, FL: Psychological Assessment.
Input multiple versions of a source document, and receive HTML code for a highlighted version of the source document indicating the frequency of occurrence of phrases in the different versions. This method is described in Chapter 3 of Rogers (2024) <https://digitalcommons.unl.edu/dissertations/AAI31240449/>.
This package provides functions for specifying and fitting marginal models for contingency tables proposed by Bergsma and Rudas (2002) <doi:10.1214/aos/1015362188> here called hierarchical multinomial marginal models (hmmm) and their extensions presented by Bartolucci, Colombi and Forcina (2007) <https://www.jstor.org/stable/24307737>; multinomial Poisson homogeneous (mph) models and homogeneous linear predictor (hlp) models for contingency tables proposed by Lang (2004) <doi:10.1214/aos/1079120140> and Lang (2005) <doi:10.1198/016214504000001042>. Inequality constraints on the parameters are allowed and can be tested.
Several procedures for the hierarchical kernel extreme value process of Reich and Shaby (2012) <DOI:10.1214/12-AOAS591>, including simulation, estimation and spatial extrapolation. The spatial latent variable model <DOI:10.1214/11-STS376> is also included.
Homomorphic computations in R for privacy-preserving applications. Currently only the Paillier Scheme is implemented.
This package contains functions for fitting hierarchical versions of EVSD, UVSD, DPSD, DPSD with d restricted to be positive, and our gamma signal detection model to recognition memory confidence-ratings data.
Fits sparse interaction models for continuous and binary responses subject to the strong (or weak) hierarchy restriction that an interaction between two variables only be included if both (or at least one of) the variables is included as a main effect. For more details, see Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.
This package provides HE plot and other functions for visualizing hypothesis tests in multivariate linear models. HE plots represent sums-of-squares-and-products matrices for linear hypotheses and for error using ellipses (in two dimensions) and ellipsoids (in three dimensions). It also provides other tools for analysis and graphical display of the models such as robust methods and homogeneity of variance covariance matrices. The related candisc package provides visualizations in a reduced-rank canonical discriminant space when there are more than a few response variables.
Simulate haplotypes through meioses. Allows specification of population parameters.
This package provides a two-step double-robust method to estimate the conditional average treatment effects (CATE) with potentially high-dimensional covariate(s). In the first stage, the nuisance functions necessary for identifying CATE are estimated by machine learning methods, allowing the number of covariates to be comparable to or larger than the sample size. The second stage consists of a low-dimensional local linear regression, reducing CATE to a function of the covariate(s) of interest. The CATE estimator implemented in this package not only allows for high-dimensional data, but also has the â double robustnessâ property: either the model for the propensity score or the models for the conditional means of the potential outcomes are allowed to be misspecified (but not both). This package is based on the paper by Fan et al., "Estimation of Conditional Average Treatment Effects With High-Dimensional Data" (2022), Journal of Business & Economic Statistics <doi:10.1080/07350015.2020.1811102>.
Read PLINK 1.9 binary datasets (BED/BIM/FAM) and generate the CSV files required by the Erasmus MC HIrisPlex / HIrisPlex-S webtool <https://hirisplex.erasmusmc.nl/>. It maps PLINK alleles to the webtool's required rsID_Allele columns (0/1/2/NA). No external tools (e.g., PLINK CLI') are required.
Several handy plots for quickly looking at the relationship between two numeric vectors of equal length. Quickly visualize scatter plots, residual plots, qq-plots, box plots, confidence intervals, and prediction intervals.