Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Bundles the datasets and functions used in the textbook by Philip Pollock and Barry Edwards, an R Companion to Essentials of Political Analysis, Second Edition.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of SDG monitoring, as the survey produces information on 32 global SDG indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using Probability Proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household.
This package provides functions to assist in diagnostics and plotting during the causal inference modeling process. Supplements the bartCause package.
Image-based color matching using the "Mycological Colour Chart" by Rayner (1970, ISBN:9780851980263) and its associated fungal pigments. This package will assist mycologists in identifying color during morphological analysis.
Computes optimal changepoint models using the Poisson likelihood for non-negative count data, subject to the PeakSeg constraint: the first change must be up, second change down, third change up, etc. For more info about the models and algorithms, read "Constrained Dynamic Programming and Supervised Penalty Learning Algorithms for Peak Detection" <https://jmlr.org/papers/v21/18-843.html> by TD Hocking et al.
Based on different statistical definitions of discrimination, several methods have been proposed to detect and mitigate social inequality in machine learning models. This package aims to provide an alternative to fairness treatment in predictive models. The ROC method implemented in this package is described by Kamiran, Karim and Zhang (2012) <https://ieeexplore.ieee.org/document/6413831/>.
Improved methods to construct prediction intervals for network meta-analysis. The parametric bootstrap and Kenward-Roger-type adjustment by Noma et al. (2022) <forthcoming> are implementable.
Analysis of pervasiveness of effects in correlational data. The Observed Proportion (or Percentage) of Concordant Pairs (OPCP) is Kendall's Tau expressed on a 0 to 1 metric instead of the traditional -1 to 1 metric to facilitate interpretation. As its name implies, it represents the proportion of concordant pairs in a sample (with an adjustment for ties). Pairs are concordant when a participant who has a larger value on a variable than another participant also has a larger value on a second variable. The OPCP is therefore an easily interpretable indicator of monotonicity. The pervasive functions are essentially wrappers for the arules package by Hahsler et al. (2025)<doi:10.32614/CRAN.package.arules> and serve to count individuals who actually display the pattern(s) suggested by a regression. For more details, see the paper "Considering approaches to pervasiveness in the context of personality psychology" now accepted at the journal Personality Science.
Can be used to carry out permutation based gene expression pathway analysis. This work was supported by a National Institute of Allergy and Infectious Disease/National Institutes of Health contract (No. HHSN272200900059C).
Reconstruct pedigrees from genotype data, by optimising the likelihood over all possible pedigrees subject to given restrictions. Tailor-made plots facilitate evaluation of the output. This package is part of the pedsuite ecosystem for pedigree analysis. In particular, it imports pedprobr for calculating pedigree likelihoods and forrel for estimating pairwise relatedness.
This package implements tools for the analysis of partially ordered data, with a particular focus on the evaluation of multidimensional systems of indicators and on the analysis of poverty. References, Fattore M. (2016) <doi:10.1007/s11205-015-1059-6> Fattore M., Arcagni A. (2016) <doi:10.1007/s11205-016-1501-4> Arcagni A. (2017) <doi:10.1007/978-3-319-45421-4_19>.
We included functions to assess the performance of risk models. The package contains functions for the various measures that are used in empirical studies, including univariate and multivariate odds ratios (OR) of the predictors, the c-statistic (or area under the receiver operating characteristic (ROC) curve (AUC)), Hosmer-Lemeshow goodness of fit test, reclassification table, net reclassification improvement (NRI) and integrated discrimination improvement (IDI). Also included are functions to create plots, such as risk distributions, ROC curves, calibration plot, discrimination box plot and predictiveness curves. In addition to functions to assess the performance of risk models, the package includes functions to obtain weighted and unweighted risk scores as well as predicted risks using logistic regression analysis. These logistic regression functions are specifically written for models that include genetic variables, but they can also be applied to models that are based on non-genetic risk factors only. Finally, the package includes function to construct a simulated dataset with genotypes, genetic risks, and disease status for a hypothetical population, which is used for the evaluation of genetic risk models.
This package implements univariate polynomial operations in R, including polynomial arithmetic, finding zeros, plotting, and some operations on lists of polynomials.
Run simulations to assess the impact of various designs features and the underlying biological behaviour on the outcome of a Patient Derived Xenograft (PDX) population study. This project can either be deployed to a server as a shiny app or installed locally as a package and run the app using the command populationPDXdesignApp()'.
This package provides a unified framework for generating, submitting, and analyzing pairwise comparisons of writing quality using large language models (LLMs). The package supports live and/or batch evaluation workflows across multiple providers ('OpenAI', Anthropic', Google Gemini', Together AI', and locally-hosted Ollama models), includes bias-tested prompt templates and a flexible template registry, and offers tools for constructing forward and reversed comparison sets to analyze consistency and positional bias. Results can be modeled using Bradleyâ Terry (1952) <doi:10.2307/2334029> or Elo rating methods to derive writing quality scores. For information on the method of pairwise comparisons, see Thurstone (1927) <doi:10.1037/h0070288> and Heldsinger & Humphry (2010) <doi:10.1007/BF03216919>. For information on Elo ratings, see Clark et al. (2018) <doi:10.1371/journal.pone.0190393>.
This package implements a general framework for creating dependency graphs using projection as introduced in Fan, Feng and Xia (2019)<arXiv:1501.01617>. Both lasso and sparse additive model projections are implemented. Both Pearson correlation and distance covariance options are available to generate the graph.
Create a project directory structure, along with typical files for that project. This allows projects to be quickly and easily created, as well as for them to be standardized. Designed specifically with scientists in mind (mainly bio-medical researchers, but likely applies to other fields).
This package contains functions to calculate power and sample size for various study designs used in bioequivalence studies. Use known.designs() to see the designs supported. Power and sample size can be obtained based on different methods, amongst them prominently the TOST procedure (two one-sided t-tests). See README and NEWS for further information.
The main goal of the psycho package is to provide tools for psychologists, neuropsychologists and neuroscientists, to facilitate and speed up the time spent on data analysis. It aims at supporting best practices and tools to format the output of statistical methods to directly paste them into a manuscript, ensuring statistical reporting standardization and conformity.
Power analysis and sample size determination for moderation, mediation, and moderated mediation in models fitted by structural equation modelling using the lavaan package by Rosseel (2012) <doi:10.18637/jss.v048.i02> or by multiple regression. The package manymome by Cheung and Cheung (2024) <doi:10.3758/s13428-023-02224-z> is used to specify the indirect paths or conditional indirect paths to be tested.
Find recursive dependencies of R packages from various sources. Solve the dependencies to obtain a consistent set of packages to install. Download packages, and install them. It supports packages on CRAN', Bioconductor and other CRAN-like repositories, GitHub', package URLs', and local package trees and files. It caches metadata and package files via the pkgcache package, and performs all HTTP requests, downloads, builds and installations in parallel. pkgdepends is the workhorse of the pak package.
Easy function for text-mining the PubMed repository based on defined sets of terms. The relationship between fix-terms (related to your research topic) and pub-terms (terms which pivot around your research focus) is calculated using the pointwise mutual information algorithm ('PMI'). Church, Kenneth Ward and Hanks, Patrick (1990) <https://www.aclweb.org/anthology/J90-1003/> A text file is generated with the PMI'-scores for each fix-term. Then for each collocation pairs (a fix-term + a pub-term), a text file is generated with related article titles and publishing years. Additional Author section will follow in the next version updates.
This package provides Partial least squares Regression for (weighted) beta regression models (Bertrand 2013, <https://ojs-test.apps.ocp.math.cnrs.fr/index.php/J-SFdS/article/view/215>) and k-fold cross-validation of such models using various criteria. It allows for missing data in the explanatory variables. Bootstrap confidence intervals constructions are also available.
We fit causal models using proxies. We implement two stage proximal least squares estimator. E.J. Tchetgen Tchetgen, A. Ying, Y. Cui, X. Shi, and W. Miao. (2020). An Introduction to Proximal Causal Learning. arXiv e-prints, arXiv-2009 <arXiv:2009.10982>.