Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
In ecology, spatial data is often represented using polygons. These polygons can represent a variety of spatial entities, such as ecological patches, animal home ranges, or gaps in the forest canopy. Researchers often need to determine if two spatial processes, represented by these polygons, are independent of each other. For instance, they might want to test if the home range of a particular animal species is influenced by the presence of a certain type of vegetation. To address this, Godoy et al. (2022) (<doi:10.1016/j.spasta.2022.100695>) developed conditional Monte Carlo tests. These tests are designed to assess spatial independence while taking into account the shape and size of the polygons.
We propose a novel two-step procedure to combine epidemiological data obtained from diverse sources with the aim to quantify risk factors affecting the probability that an individual develops certain disease such as cancer. See Hui Huang, Xiaomei Ma, Rasmus Waagepetersen, Theodore R. Holford, Rong Wang, Harvey Risch, Lloyd Mueller & Yongtao Guan (2014) A New Estimation Approach for Combining Epidemiological Data From Multiple Sources, Journal of the American Statistical Association, 109:505, 11-23, <doi:10.1080/01621459.2013.870904>.
This package provides a tool to calculate sky illuminance values (in lux) for both sun and moon. The model is a translation of the Fortran code by Janiczek and DeYoung (1987) <https://archive.org/details/DTIC_ADA182110>.
The superdiag package provides a comprehensive test suite for testing Markov Chain nonconvergence. It integrates five standard empirical MCMC convergence diagnostics (Gelman-Rubin, Geweke, Heidelberger-Welch, Raftery-Lewis, and Hellinger distance) and plotting functions for trace plots and density histograms. The functions of the package can be used to present all diagnostic statistics and graphs at once for conveniently checking MCMC nonconvergence.
Construct sketches of data via random subspace embeddings. For more details, see the following papers. Lee, S. and Ng, S. (2022). "Least Squares Estimation Using Sketched Data with Heteroskedastic Errors," Proceedings of the 39th International Conference on Machine Learning (ICML22), 162:12498-12520. Lee, S. and Ng, S. (2020). "An Econometric Perspective on Algorithmic Subsampling," Annual Review of Economics, 12(1): 45â 80.
This package implements multiple imputation of missing covariates by Substantive Model Compatible Fully Conditional Specification. This is a modification of the popular FCS/chained equations multiple imputation approach, and allows imputation of missing covariate values from models which are compatible with the user specified substantive model.
This package implements the algorithm described in Guo, H., and Li, J., "scSorter: assigning cells to known cell types according to known marker genes". Cluster cells to known cell types based on marker genes specified for each cell type.
Geostatistical modeling and kriging with gridded data using spatially separable covariance functions (Kronecker covariances). Kronecker products in these models provide shortcuts for solving large matrix problems in likelihood and conditional mean, making snapKrig computationally efficient with large grids. The package supplies its own S3 grid object class, and a host of methods including plot, print, Ops, square bracket replace/assign, and more. Our computational methods are described in Koch, Lele, Lewis (2020) <doi:10.7939/r3-g6qb-bq70>.
This package provides a rudimentary sequencer to define, manipulate and mix sound samples. The underlying motivation is to sonify data, as demonstrated in the blog <https://globxblog.github.io/>, the presentation by Renard and Le Bescond (2022, <https://hal.science/hal-03710340v1>) or the poster by Renard et al. (2023, <https://hal.inrae.fr/hal-04388845v1>).
Connect to a remote server over SSH to transfer files via SCP, setup a secure tunnel, or run a command or script on the host while streaming stdout and stderr directly to the client.
Add shiny inputs with one or more inline buttons that grow and shrink with inputs. Also add tool tips to input buttons and styling and messages for input validation.
Implementation of the SIMEX-Algorithm by Cook & Stefanski (1994) <doi:10.1080/01621459.1994.10476871> and MCSIMEX by Küchenhoff, Mwalili & Lesaffre (2006) <doi:10.1111/j.1541-0420.2005.00396.x>.
This package provides methods for regression with high-dimensional predictors and univariate or maltivariate response variables. It considers the decomposition of the coefficient matrix that leads to the best approximation to the signal part in the response given any rank, and estimates the decomposition by solving a penalized generalized eigenvalue problem followed by a least squares procedure. Ruiyan Luo and Xin Qi (2017) <doi:10.1016/j.jmva.2016.09.005>.
Bundles functions used to analyze the harmfulness of trial errors in criminal trials. Functions in the Scientific Analysis of Trial Errors ('sate') package help users estimate the probability that a jury will find a defendant guilty given jurors preferences for a guilty verdict and the uncertainty of that estimate. Users can also compare actual and hypothetical trial conditions to conduct harmful error analysis. The conceptual framework is discussed by Barry Edwards, A Scientific Framework for Analyzing the Harmfulness of Trial Errors, UCLA Criminal Justice Law Review (2024) <doi:10.5070/CJ88164341> and Barry Edwards, If The Jury Only Knew: The Effect Of Omitted Mitigation Evidence On The Probability Of A Death Sentence, Virginia Journal of Social Policy & the Law (2025) <https://vasocialpolicy.org/wp-content/uploads/2025/05/Edwards-If-The-Jury-Only-Knew.pdf>. The relationship between individual jurors verdict preferences and the probability that a jury returns a guilty verdict has been studied by Davis (1973) <doi:10.1037/h0033951>; MacCoun & Kerr (1988) <doi:10.1037/0022-3514.54.1.21>, and Devine et el. (2001) <doi:10.1037/1076-8971.7.3.622>, among others.
Assessment of the distributions of baseline continuous and categorical variables in randomised trials. This method is based on the Carlisle-Stouffer method with Monte Carlo simulations. It calculates p-values for each trial baseline variable, as well as combined p-values for each trial - these p-values measure how compatible are distributions of trials baseline variables with random sampling. This package also allows for graphically plotting the cumulative frequencies of computed p-values. Please note that code was partly adapted from Carlisle JB, Loadsman JA. (2017) <doi:10.1111/anae.13650>.
Symbolic central and non-central moments of the multivariate normal distribution. Computes a standard representation, LateX code, and values at specified mean and covariance matrices.
Settings and functions to extend the knitr SAS engine.
Efficient R package for latent class analysis of recurrent events, based on the semiparametric multiplicative intensity model by Zhao et al. (2022) <doi:10.1111/rssb.12499>. SLCARE returns estimates for non-functional model parameters along with the associated variance estimates and p-values. Visualization tools are provided to depict the estimated functional model parameters and related functional quantities of interest. SLCARE also delivers a model checking plot to help assess the adequacy of the fitted model.
This package provides a simple wrapper to easily design vanilla deep neural networks using Tensorflow'/'Keras backend for regression, classification and multi-label tasks, with some tweaks and tricks (skip shortcuts, embedding, feature selection and anomaly detection).
The single cell mapper (scMappR) R package contains a suite of bioinformatic tools that provide experimentally relevant cell-type specific information to a list of differentially expressed genes (DEG). The function "scMappR_and_pathway_analysis" reranks DEGs to generate cell-type specificity scores called cell-weighted fold-changes. Users input a list of DEGs, normalized counts, and a signature matrix into this function. scMappR then re-weights bulk DEGs by cell-type specific expression from the signature matrix, cell-type proportions from RNA-seq deconvolution and the ratio of cell-type proportions between the two conditions to account for changes in cell-type proportion. With cwFold-changes calculated, scMappR uses two approaches to utilize cwFold-changes to complete cell-type specific pathway analysis. The "process_dgTMatrix_lists" function in the scMappR package contains an automated scRNA-seq processing pipeline where users input scRNA-seq count data, which is made compatible for scMappR and other R packages that analyze scRNA-seq data. We further used this to store hundreds up regularly updating signature matrices. The functions "tissue_by_celltype_enrichment", "tissue_scMappR_internal", and "tissue_scMappR_custom" combine these consistently processed scRNAseq count data with gene-set enrichment tools to allow for cell-type marker enrichment of a generic gene list (e.g. GWAS hits). Reference: Sokolowski,D.J., Faykoo-Martinez,M., Erdman,L., Hou,H., Chan,C., Zhu,H., Holmes,M.M., Goldenberg,A. and Wilson,M.D. (2021) Single-cell mapper (scMappR): using scRNA-seq to infer cell-type specificities of differentially expressed genes. NAR Genomics and Bioinformatics. 3(1). Iqab011. <doi:10.1093/nargab/lqab011>.
Fit, summarize, and predict for a variety of spatial statistical models applied to point-referenced and areal (lattice) data. Parameters are estimated using various methods. Additional modeling features include anisotropy, non-spatial random effects, partition factors, big data approaches, and more. Model-fit statistics are used to summarize, visualize, and compare models. Predictions at unobserved locations are readily obtainable. For additional details, see Dumelle et al. (2023) <doi:10.1371/journal.pone.0282524>.
Numerically solve and plot solutions of a parametric ordinary differential equations model of growth, death, and respiration of macroinvertebrate and algae taxa dependent on pre-defined environmental factors. The model (version 1.0) is introduced in Schuwirth, N. and Reichert, P., (2013) <DOI:10.1890/12-0591.1>. This package includes model extensions and the core functions introduced and used in Schuwirth, N. et al. (2016) <DOI:10.1111/1365-2435.12605>, Kattwinkel, M. et al. (2016) <DOI:10.1021/acs.est.5b04068>, Mondy, C. P., and Schuwirth, N. (2017) <DOI:10.1002/eap.1530>, and Paillex, A. et al. (2017) <DOI:10.1111/fwb.12927>.
This package provides functions to perform most of the common analysis in genome association studies are implemented. These analyses include descriptive statistics and exploratory analysis of missing values, calculation of Hardy-Weinberg equilibrium, analysis of association based on generalized linear models (either for quantitative or binary traits), and analysis of multiple SNPs (haplotype and epistasis analysis). Permutation test and related tests (sum statistic and truncated product) are also implemented. Max-statistic and genetic risk-allele score exact distributions are also possible to be estimated. The methods are described in Gonzalez JR et al., 2007 <doi: 10.1093/bioinformatics/btm025>.
This package provides a toolkit for stratified medicine, subgroup identification, and precision medicine. Current tools include (1) filtering models (reduce covariate space), (2) patient-level estimate models (counterfactual patient-level quantities, such as the conditional average treatment effect), (3) subgroup identification models (find subsets of patients with similar treatment effects), and (4) treatment effect estimation and inference (for the overall population and discovered subgroups). These tools can be customized and are directly used in PRISM (patient response identifiers for stratified medicine; Jemielita and Mehrotra 2019 <arXiv:1912.03337>. This package is in beta and will be continually updated.