Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
SimBu can be used to simulate bulk RNA-seq datasets with known cell type fractions. You can either use your own single-cell study for the simulation or the sfaira database. Different pre-defined simulation scenarios exist, as are options to run custom simulations. Additionally, expression values can be adapted by adding an mRNA bias, which produces more biologically relevant simulations.
This package provides a package for inferring, comparing, and visualizing gene networks from single-cell RNA sequencing data. It integrates multiple methods (GENIE3, GRNBoost2, ZILGM, PCzinb, and JRF) for robust network inference, supports consensus building across methods or datasets, and provides tools for evaluating regulatory structure and community similarity. GRNBoost2 requires Python package arboreto which can be installed using init_py(install_missing = TRUE). This package includes adapted functions from ZILGM (Park et al., 2021), JRF (Petralia et al., 2015), and learn2count (Nguyen et al. 2023) packages with proper attribution under GPL-2 license.
This package provides methods for measuring the strength of association between a network and a phenotype. It does this by measuring clustering of the phenotype across the network (Knet). Vertices can also be individually ranked by their strength of association with high-weight vertices (Knode).
This package provides an interface to build a unified database of genomic annotations and their coordinates (gene, transcript and exon levels). It is aimed to be used when simple tab-delimited annotations (or simple GRanges objects) are required instead of the more complex annotation Bioconductor packages. Also useful when combinatorial annotation elements are reuired, such as RefSeq coordinates with Ensembl biotypes. Finally, it can download, construct and handle annotations with versioned genes and transcripts (where available, e.g. RefSeq and latest Ensembl). This is particularly useful in precision medicine applications where the latter must be reported.
Pretrained models for scAnnotatR package. These models can be used to automatically classify several (immune) cell types in human scRNA-seq data.
This package provides a streamlined tool provides a graphical user interface for quality control based signal drift correction (QC-RFSC), integration of data from multi-batch MS-based experiments, and the comprehensive statistical analysis in metabolomics and proteomics.
An unsupervised cross-validation method to select the optimal number of mutational signatures. A data set of mutational counts is split into training and validation data.Signatures are estimated in the training data and then used to predict the mutations in the validation data.
Demonstrate tokenization and a search gadget for collections of CSV files.
SAFE is a resampling-based method for testing functional categories in gene expression experiments. SAFE can be applied to 2-sample and multi-class comparisons, or simple linear regressions. Other experimental designs can also be accommodated through user-defined functions.
This package provides a toolbox for sparse contrastive principal component analysis (scPCA) of high-dimensional biological data. scPCA combines the stability and interpretability of sparse PCA with contrastive PCA's ability to disentangle biological signal from unwanted variation through the use of control data. Also implements and extends cPCA.
High-throughput single-cell measurements of DNA methylomes can quantify methylation heterogeneity and uncover its role in gene regulation. However, technical limitations and sparse coverage can preclude this task. scMET is a hierarchical Bayesian model which overcomes sparsity, sharing information across cells and genomic features to robustly quantify genuine biological heterogeneity. scMET can identify highly variable features that drive epigenetic heterogeneity, and perform differential methylation and variability analyses. We illustrate how scMET facilitates the characterization of epigenetically distinct cell populations and how it enables the formulation of novel hypotheses on the epigenetic regulation of gene expression.
This package provides a R interface to the TnT javascript library (https://github.com/ tntvis) to provide interactive and flexible visualization of track-based genomic data.
colorectal cancer miRNA profile provided by TCGA.
Detection of differentially expressed genes (DEGs) from the comparison of two biological conditions (treated vs. untreated, diseased vs. normal, mutant vs. wild-type) among different levels of gene expression (transcriptome ,translatome, proteome), using several statistical methods: Rank Product, Translational Efficiency, t-test, Limma, ANOTA, DESeq, edgeR. Possibility to plot the results with scatterplots, histograms, MA plots, standard deviation (SD) plots, coefficient of variation (CV) plots. Detection of significantly enriched post-transcriptional regulatory factors (RBPs, miRNAs, etc) and Gene Ontology terms in the lists of DEGs previously identified for the two expression levels. Comparison of GO terms enriched only in one of the levels or in both. Calculation of the semantic similarity score between the lists of enriched GO terms coming from the two expression levels. Visual examination and comparison of the enriched terms with heatmaps, radar plots and barplots.
transmogR provides the tools needed to crate a new reference genome or reference transcriptome, using a set of variants. Variants can be any combination of SNPs, Insertions and Deletions. The intended use-case is to enable creation of variant-modified reference transcriptomes for incorporation into transcriptomic pseudo-alignment workflows, such as salmon.
Analyze thermal proteome profiling (TPP) experiments with varying temperatures (TR) or compound concentrations (CCR).
tidyFlowCore bridges the gap between flow cytometry analysis using the flowCore Bioconductor package and the tidy data principles advocated by the tidyverse. It provides a suite of dplyr-, ggplot2-, and tidyr-like verbs specifically designed for working with flowFrame and flowSet objects as if they were tibbles; however, your data remain flowCore data structures under this layer of abstraction. tidyFlowCore enables intuitive and streamlined analysis workflows that can leverage both the Bioconductor and tidyverse ecosystems for cytometry data.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Test3\_probe\_tab.
Differential expression analysis of RNA-seq using the Poisson-Tweedie (PT) family of distributions. PT distributions are described by a mean, a dispersion and a shape parameter and include Poisson and NB distributions, among others, as particular cases. An important feature of this family is that, while the Negative Binomial (NB) distribution only allows a quadratic mean-variance relationship, the PT distributions generalizes this relationship to any orde.
Implementation of a clustering method for time series gene expression data based on mixed-effects models with Gaussian variables and non-parametric cubic splines estimation. The method can robustly account for the high levels of noise present in typical gene expression time series datasets.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Offers functions for plotting split (or implicit) networks (unrooted, undirected) and explicit networks (rooted, directed) with reticulations extending. ggtree and using functions from ape and phangorn'. It extends the ggtree package [@Yu2017] to allow the visualization of phylogenetic networks using the ggplot2 syntax. It offers an alternative to the plot functions already available in ape Paradis and Schliep (2019) <doi:10.1093/bioinformatics/bty633> and phangorn Schliep (2011) <doi:10.1093/bioinformatics/btq706>.
This is an advanced version of TDbasedUFE, which is a comprehensive package to perform Tensor decomposition based unsupervised feature extraction. In contrast to TDbasedUFE which can perform simple the feature selection and the multiomics analyses, this package can perform more complicated and advanced features, but they are not so popularly required. Only users who require more specific features can make use of its functionality.