Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to allow you to easily pass command-line arguments into R, and functions to aid in submitting your R code in parallel on a cluster and joining the results afterward (e.g. multiple parameter values for simulations running in parallel, splitting up a permutation test in parallel, etc.). See `parseCommandArgs(...) for the main example of how to use this package.
Implementing the Block Coordinate Ascent with One-Step Generalized Rosen (BCA1SG) algorithm on the semiparametric models for panel count data, interval-censored survival data, and degradation data. A comprehensive description of the BCA1SG algorithm can be found in Wang et al. (2020) <https://github.com/yudongstat/BCA1SG/blob/master/BCA1SG.pdf>. For details of the semiparametric models for panel count data, interval-censored survival data, and degradation data, please see Wellner and Zhang (2007) <doi:10.1214/009053607000000181>, Huang and Wellner (1997) <ISBN:978-0-387-94992-5>, and Wang and Xu (2010) <doi:10.1198/TECH.2009.08197>, respectively.
Bagging bandwidth selection methods for the Parzen-Rosenblatt and Nadaraya-Watson estimators. These bandwidth selectors can achieve greater statistical precision than their non-bagged counterparts while being computationally fast. See Barreiro-Ures et al. (2020) <doi:10.1093/biomet/asaa092> and Barreiro-Ures et al. (2021) <doi:10.48550/arXiv.2105.04134>.
This package provides functions for modelling microbial inactivation under isothermal or dynamic conditions. The calculations are based on several mathematical models broadly used by the scientific community and industry. Functions enable to make predictions for cases where the kinetic parameters are known. It also implements functions for parameter estimation for isothermal and dynamic conditions. The model fitting capabilities include an Adaptive Monte Carlo method for a Bayesian approach to parameter estimation.
Bimodal Gumbel distribution. General functions for performing extreme value analysis.
This package implements a backward procedure for single and multiple change point detection proposed by Shin et al. <arXiv:1812.10107>. The backward approach is particularly useful to detect short and sparse signals which is common in copy number variation (CNV) detection.
Analysis workflow for finding geographic boundaries of ecological or landscape traits and comparing the placement of geographic boundaries of two traits. If data are trait values, trait data are transformed to boundary intensities based on approximate first derivatives across latitude and longitude. The package includes functions to create custom null models based on the input data. The boundary statistics are described in: Fortin, Drapeau, and Jacquez (1996) <doi:10.2307/3545584>.
These are bartMachine's Java dependency libraries. Note: this package has no functionality of its own and should not be installed as a standalone package without bartMachine.
This package provides functions to specify, fit and visualize nested partially-latent class models ( Wu, Deloria-Knoll, Hammitt, and Zeger (2016) <doi:10.1111/rssc.12101>; Wu, Deloria-Knoll, and Zeger (2017) <doi:10.1093/biostatistics/kxw037>; Wu and Chen (2021) <doi:10.1002/sim.8804>) for inference of population disease etiology and individual diagnosis. In the motivating Pneumonia Etiology Research for Child Health (PERCH) study, because both quantities of interest sum to one hundred percent, the PERCH scientists frequently refer to them as population etiology pie and individual etiology pie, hence the name of the package.
This package provides a Bayesian regression model for discrete response, where the conditional distribution is modelled via a discrete Weibull distribution. This package provides an implementation of Metropolis-Hastings and Reversible-Jumps algorithms to draw samples from the posterior. It covers a wide range of regularizations through any two parameter prior. Examples are Laplace (Lasso), Gaussian (ridge), Uniform, Cauchy and customized priors like a mixture of priors. An extensive visual toolbox is included to check the validity of the results as well as several measures of goodness-of-fit.
Enables the user to infer potential synthetic lethal relationships by analysing relationships between bimodally distributed gene pairs in big gene expression datasets. Enables the user to visualise these candidate synthetic lethal relationships.
This package implements methods for building and analyzing models based on panel data as described in the paper by Moral-Benito (2013, <doi:10.1080/07350015.2013.818003>). The package provides functions to estimate dynamic panel data models and analyze the results of the estimation.
Finds the best block diagonal matrix approximation of a symmetric matrix. This can be exploited for divisive hierarchical clustering using singular vectors, named HC-SVD. The method is described in Bauer (202Xa) <doi:10.48550/arXiv.2308.06820>.
The Autoregressive Integrated Moving Average (ARIMA) model is very popular univariate time series model. Its application has been widened by the incorporation of exogenous variable(s) (X) in the model and modified as ARIMAX by Bierens (1987) <doi:10.1016/0304-4076(87)90086-8>. In this package we estimate the ARIMAX model using Bayesian framework.
Parse and read the files that comply with the brain imaging data structure, or BIDS format, see the publication from Gorgolewski, K., Auer, T., Calhoun, V. et al. (2016) <doi:10.1038/sdata.2016.44>. Provides query functions to extract and check the BIDS entity information (such as subject, session, task, etc.) from the file paths and suffixes according to the specification. The package is developed and used in the reproducible analysis and visualization of intracranial electroencephalography, or RAVE', see Magnotti, J. F., Wang, Z., and Beauchamp, M. S. (2020) <doi:10.1016/j.neuroimage.2020.117341>; see citation("bidsr") for details and attributions.
This package provides functions to access data from the BrasilAPI', REST Countries API', Nager.Date API', and World Bank API', related to Brazil's postal codes, banks, holidays, company registrations, international country indicators, public holidays information, and economic development data. Additionally, the package includes curated datasets related to Brazil, covering topics such as demographic data (males and females by state and year), river levels, environmental emission factors, film festivals, and yellow fever outbreak records. The package supports research and analysis focused on Brazil by integrating open APIs with high-quality datasets from multiple domains. For more information on the APIs, see: BrasilAPI <https://brasilapi.com.br/>, Nager.Date <https://date.nager.at/Api>, World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>, and REST Countries API <https://restcountries.com/>.
Bindings for additional tree-based model engines for use with the parsnip package. Models include gradient boosted decision trees with LightGBM (Ke et al, 2017.), conditional inference trees and conditional random forests with partykit (Hothorn and Zeileis, 2015. and Hothorn et al, 2006. <doi:10.1198/106186006X133933>), and accelerated oblique random forests with aorsf (Jaeger et al, 2022 <doi:10.5281/zenodo.7116854>).
Co-clustering of the rows and columns of a contingency or binary matrix, or double binary matrices and model selection for the number of row and column clusters. Three models are considered: the Poisson latent block model for contingency matrix, the binary latent block model for binary matrix and a new model we develop: the multiple latent block model for double binary matrices. A new procedure named bikm1 is implemented to investigate more efficiently the grid of numbers of clusters. Then, the studied model selection criteria are the integrated completed likelihood (ICL) and the Bayesian integrated likelihood (BIC). Finally, the co-clustering adjusted Rand index (CARI) to measure agreement between co-clustering partitions is implemented. Robert Valerie, Vasseur Yann, Brault Vincent (2021) <doi:10.1007/s00357-020-09379-w>.
The Bootstrap framework lets you add some JavaScript functionality to your web site by adding attributes to your HTML tags - Bootstrap takes care of the JavaScript <https://getbootstrap.com/docs/3.3/javascript/>. If you are using R Markdown or Shiny, you can use these functions to create collapsible sections, accordion panels, modals, tooltips, popovers, and an accordion sidebar framework (not described at Bootstrap site). Please note this package was designed for Bootstrap 3.3.
Algorithms for computing and generating plots with and without error bars for Bayesian cluster validity index (BCVI) (O. Preedasawakul, and N. Wiroonsri, A Bayesian Cluster Validity Index, Computational Statistics & Data Analysis, 202, 108053, 2025. <doi:10.1016/j.csda.2024.108053>) based on several underlying cluster validity indexes (CVIs) including Calinski-Harabasz, Chou-Su-Lai, Davies-Bouldin, Dunn, Pakhira-Bandyopadhyay-Maulik, Point biserial correlation, the score function, Starczewski, and Wiroonsri indices for hard clustering, and Correlation Cluster Validity, the generalized C, HF, KWON, KWON2, Modified Pakhira-Bandyopadhyay-Maulik, Pakhira-Bandyopadhyay-Maulik, Tang, Wiroonsri-Preedasawakul, Wu-Li, and Xie-Beni indices for soft clustering. The package is compatible with K-means, fuzzy C means, EM clustering, and hierarchical clustering (single, average, and complete linkage). Though BCVI is compatible with any underlying existing CVIs, we recommend users to use either WI or WP as the underlying CVI.
The bootstrap ARDL tests for cointegration is the main functionality of this package. It also acts as a wrapper of the most commond ARDL testing procedures for cointegration: the bound tests of Pesaran, Shin and Smith (PSS; 2001 - <doi:10.1002/jae.616>) and the asymptotic test on the independent variables of Sam, McNown and Goh (SMG: 2019 - <doi:10.1016/j.econmod.2018.11.001>). Bootstrap and bound tests are performed under both the conditional and unconditional ARDL models.
Use BirdNET', a state-of-the-art deep learning classifier, to automatically identify (bird) sounds. Analyze bioacoustic datasets without any computer science background using a pre-trained model or a custom trained classifier. Predict bird species occurrence based on location and week of the year. Kahl, S., Wood, C. M., Eibl, M., & Klinck, H. (2021) <doi:10.1016/j.ecoinf.2021.101236>.
This package provides tools designed to perform and evaluate cluster analysis (including Tocher's algorithm), discriminant analysis and path analysis (standard and under collinearity), as well as some useful miscellaneous tools for dealing with sample size and optimum plot size calculations. A test for seed sample heterogeneity is now available. Mantel's permutation test can be found in this package. A new approach for calculating its power is implemented. biotools also contains tests for genetic covariance components. Heuristic approaches for performing non-parametric spatial predictions of generic response variables and spatial gene diversity are implemented.
This package provides statistical tools for Bayesian estimation of mixture distributions, mainly a mixture of Gamma, Normal, and t-distributions. The package is implemented based on the Bayesian literature for the finite mixture of distributions, including Mohammadi and et al. (2013) <doi:10.1007/s00180-012-0323-3> and Mohammadi and Salehi-Rad (2012) <doi:10.1080/03610918.2011.588358>.