Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An extensive set of data (pre-)processing and analysis methods and tools for metabolomics and other omics, with a strong emphasis on statistics and machine learning. This toolbox allows the user to build extensive and standardised workflows for data analysis. The methods and tools have been implemented using class-based templates provided by the struct (Statistics in R Using Class-based Templates) package. The toolbox includes pre-processing methods (e.g. signal drift and batch correction, normalisation, missing value imputation and scaling), univariate (e.g. ttest, various forms of ANOVA, Kruskal–Wallis test and more) and multivariate statistical methods (e.g. PCA and PLS, including cross-validation and permutation testing) as well as machine learning methods (e.g. Support Vector Machines). The STATistics Ontology (STATO) has been integrated and implemented to provide standardised definitions for the different methods, inputs and outputs.
Inference and detection of switch-like differential expression across single-cell RNA-seq trajectories.
seqArchR enables unsupervised discovery of _de novo_ clusters with characteristic sequence architectures characterized by position-specific motifs or composition of stretches of nucleotides, e.g., CG-richness. seqArchR does _not_ require any specifications w.r.t. the number of clusters, the length of any individual motifs, or the distance between motifs if and when they occur in pairs/groups; it directly detects them from the data. seqArchR uses non-negative matrix factorization (NMF) as its backbone, and employs a chunking-based iterative procedure that enables processing of large sequence collections efficiently. Wrapper functions are provided for visualizing cluster architectures as sequence logos.
This package provides classes and tools for multi-omics data integration.
Whole-exome sequencing data from a murine small-cell lung tumor; only contains data of chromosome 4.
saseR is a highly performant and fast framework for aberrant expression and splicing analyses. The main functions are: \itemize\item \code\linkBamtoAspliCounts - Process BAM files to ASpli counts \item \code\linkconvertASpli - Get gene, bin or junction counts from ASpli SummarizedExperiment \item \code\linkcalculateOffsets - Create an offsets assays for aberrant expression or splicing analysis \item \code\linksaseRfindEncodingDim - Estimate the optimal number of latent factors to include when estimating the mean expression \item \code\linksaseRfit - Parameter estimation of the negative binomial distribution and compute p-values for aberrant expression and splicing For information upon how to use these functions, check out our vignette at \urlhttps://github.com/statOmics/saseR/blob/main/vignettes/Vignette.Rmd and the saseR paper: Segers, A. et al. (2023). Juggling offsets unlocks RNA-seq tools for fast scalable differential usage, aberrant splicing and expression analyses. bioRxiv. \urlhttps://doi.org/10.1101/2023.06.29.547014.
SNAGEE data - gene list and correlation matrix.
This package provides tools for NanoString Technologies GeoMx Technology. Package to easily graph on top of an OME-TIFF image. Plotting annotations can range from tissue segment to gene expression.
This package contains 13 micro array data results from a serum stimulation experiment.
Statial is a suite of functions for identifying changes in cell state. The functionality provided by Statial provides robust quantification of cell type localisation which are invariant to changes in tissue structure. In addition to this Statial uncovers changes in marker expression associated with varying levels of localisation. These features can be used to explore how the structure and function of different cell types may be altered by the agents they are surrounded with.
SCAN is a microarray normalization method to facilitate personalized-medicine workflows. Rather than processing microarray samples as groups, which can introduce biases and present logistical challenges, SCAN normalizes each sample individually by modeling and removing probe- and array-specific background noise using only data from within each array. SCAN can be applied to one-channel (e.g., Affymetrix) or two-channel (e.g., Agilent) microarrays. The Universal exPression Codes (UPC) method is an extension of SCAN that estimates whether a given gene/transcript is active above background levels in a given sample. The UPC method can be applied to one-channel or two-channel microarrays as well as to RNA-Seq read counts. Because UPC values are represented on the same scale and have an identical interpretation for each platform, they can be used for cross-platform data integration.
SpatialDE is a method to find spatially variable genes (SVG) from spatial transcriptomics data. This package provides wrappers to use the Python SpatialDE library in R, using reticulate and basilisk.
Image segmentation is the process of identifying the borders of individual objects (in this case cells) within an image. This allows for the features of cells such as marker expression and morphology to be extracted, stored and analysed. simpleSeg provides functionality for user friendly, watershed based segmentation on multiplexed cellular images in R based on the intensity of user specified protein marker channels. simpleSeg can also be used for the normalization of single cell data obtained from multiple images.
This package provides large-scale single-cell omics data manipulation using Genomic Data Structure (GDS) files. It combines dense and sparse matrices stored in GDS files and the Bioconductor infrastructure framework (SingleCellExperiment and DelayedArray) to provide out-of-memory data storage and large-scale manipulation using the R programming language.
SIGHTS is a suite of normalization methods, statistical tests, and diagnostic graphical tools for high throughput screening (HTS) assays. HTS assays use microtitre plates to screen large libraries of compounds for their biological, chemical, or biochemical activity.
The package is designed to classify microarray RNA-seq gene expression profiles.
This package provides a preprocessing pipeline for single cell RNA-seq/ATAC-seq data that starts from the fastq files and produces a feature count matrix with associated quality control information. It can process fastq data generated by CEL-seq, MARS-seq, Drop-seq, Chromium 10x and SMART-seq protocols.
Data independant acquisition of UPS1 protein mix in an E. coli background obtained on a Waters Synapt G2 instrument.
Assigning probability scores to protein interactions captured in affinity purification mass spectrometry (AP-MS) expriments to infer protein-protein interactions. The output would facilitate non-specific background removal as contaminants are commonly found in AP-MS data.
Finds associations between two human genomic datasets.
Single cell Higher Order Testing (scHOT) is an R package that facilitates testing changes in higher order structure of gene expression along either a developmental trajectory or across space. scHOT is general and modular in nature, can be run in multiple data contexts such as along a continuous trajectory, between discrete groups, and over spatial orientations; as well as accommodate any higher order measurement such as variability or correlation. scHOT meaningfully adds to first order effect testing, such as differential expression, and provides a framework for interrogating higher order interactions from single cell data.
Gene expression data for the two breast cancer cohorts published by van't Veer and Van de Vijver in 2002.
This package provides a single sample pathway perturbation testing method for RNA-seq data. The method propagates changes in gene expression down gene-set topologies to compute single-sample directional pathway perturbation scores that reflect potential direction of change. Perturbation scores can be used to test significance of pathway perturbation at both individual-sample and treatment levels.
An R package providing extended biological annotations for the SomaScan Assay, a proteomics platform developed by SomaLogic Operating Co., Inc. The annotations in this package were assembled using data from public repositories. For more information about the SomaScan assay and its data, please reference the SomaLogic/SomaLogic-Data GitHub repository.