Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Extend the tidymodels ecosystem <https://www.tidymodels.org/> to enable the creation of predictive models with offset terms. Models with offsets are most useful when working with count data or when fitting an adjustment model on top of an existing model with a prior expectation. The former situation is common in insurance where data is often weighted by exposures. The latter is common in life insurance where industry mortality tables are often used as a starting point for setting assumptions.
Aims to support all features of the system credential store, including non-portable ones. Supports Keychain on macOS', and Credential Manager on Windows'. See the keyring package if you need a portable API'.
Provide principally an eponymic function that numerically computes the Le Cam's one-step estimator for an independent and identically distributed sample. One-step estimation is asymptotically efficient (see L. Le Cam (1956) <https://projecteuclid.org/euclid.bsmsp/1200501652>) and can be computed faster than the maximum likelihood estimator for large observation samples, see e.g. Brouste et al. (2021) <doi:10.32614/RJ-2021-044>.
Obtain and evaluate various optimal designs for the 3, 4, and 5-parameter logistic models. The optimal designs are obtained based on the numerical algorithm in Hyun, Wong, Yang (2018) <doi:10.18637/jss.v083.i05>.
This package provides a user-friendly R-based software package for gene clustering. Clusters are given by genes matched to prespecified profiles across various ordered treatment groups. It is particularly useful for analyzing data obtained from short time-course or dose-response microarray experiments.
Simultaneously evaluate multiple ordinal outcome measures. Applied data analysts in particular are faced with uncertainty in choosing appropriate statistical tests for ordinal data. The included shiny application allows users to simulate outcomes given different ordinal data distributions.
Set of tools to generate samples of k-th order statistics and others quantities of interest from new families of distributions. The main references for this package are: C. Kleiber and S. Kotz (2003) Statistical size distributions in economics and actuarial sciences; Gentle, J. (2009), Computational Statistics, Springer-Verlag; Naradajah, S. and Rocha, R. (2016), <DOI:10.18637/jss.v069.i10> and Stasinopoulos, M. and Rigby, R. (2015), <DOI:10.1111/j.1467-9876.2005.00510.x>. The families of distributions are: Benini distributions, Burr distributions, Dagum distributions, Feller-Pareto distributions, Generalized Pareto distributions, Inverse Pareto distributions, The Inverse Paralogistic distributions, Marshall-Olkin G distributions, exponentiated G distributions, beta G distributions, gamma G distributions, Kumaraswamy G distributions, generalized beta G distributions, beta extended G distributions, gamma G distributions, gamma uniform G distributions, beta exponential G distributions, Weibull G distributions, log gamma G I distributions, log gamma G II distributions, exponentiated generalized G distributions, exponentiated Kumaraswamy G distributions, geometric exponential Poisson G distributions, truncated-exponential skew-symmetric G distributions, modified beta G distributions, exponentiated exponential Poisson G distributions, Poisson-inverse gaussian distributions, Skew normal type 1 distributions, Skew student t distributions, Singh-Maddala distributions, Sinh-Arcsinh distributions, Sichel distributions, Zero inflated Poisson distributions.
This package implements the out-of-treatment testing from Kuelpmann and Kuzmics (2020) <doi:10.2139/ssrn.3441675> based on the Vuong Test introduced in Vuong (1989) <doi:10.2307/1912557>. Out-of treatment testing allows for a direct, pairwise likelihood comparison of theories, calibrated with pre-existing data.
This package provides analyse, interpret and understand noise pollution data. Data are typically regular time series measured with sound meter. The package is partially described in Fogola, Grasso, Masera and Scordino (2023, <DOI:10.61782/fa.2023.0063>).
Seamlessly build and manipulate graph structures, leveraging its high-performance methods for filtering, joining, and mutating data. Ensures that mutations and changes to the graph are performed in place, streamlining your workflow for optimal productivity.
Estimates optimal number of biomarkers for two-group classification based on microarray data.
This package provides tools designed to make it easier for users, particularly beginner/intermediate R users to build ordinary least squares regression models. Includes comprehensive regression output, heteroskedasticity tests, collinearity diagnostics, residual diagnostics, measures of influence, model fit assessment and variable selection procedures.
Implementation of a procedure for generating samples from a mixed distribution of ordinal and normal random variables with a pre-specified correlation matrix and marginal distributions. The details of the method are explained in Demirtas et al. (2015) <DOI:10.1080/10543406.2014.920868>.
Simplifies the creation of xlsx files by providing a high level interface to writing, styling and editing worksheets.
Selection, fusion, and/or smoothing of ordinally scaled independent variables using a group lasso, fused lasso or generalized ridge penalty, as well as non-linear principal components analysis for ordinal variables using a second-order difference/smoothing penalty.
High-quality, ubiquitous, and portable telemetry to enable effective observability. OpenTelemetry is a collection of tools, APIs, and SDKs used to instrument, generate, collect, and export telemetry data (metrics, logs, and traces) for analysis in order to understand your software's performance and behavior. This package implements the OpenTelemetry API: <https://opentelemetry.io/docs/specs/otel/>. Use this package as a dependency if you want to instrument your R package for OpenTelemetry.
This package provides functions for transforming and viewing 2-D and 3-D (oceanographic) data and model output.
The log-rank test is performed to assess the survival outcomes between two group. When there is no proper control group or obtaining such data is cumbersome, one sample log-rank test can be applied. This package performs one sample log-rank test as described in Finkelstein et al. (2003)<doi:10.1093/jnci/djt227> and variation of the test for small sample sizes which is detailed in FD Liddell (1984)<doi:10.1136/jech.38.1.85> paper. Visualization function in the package generates Kaplan-Meier Curve comparing survival curve of the general population against that of the population of interest.
The online principal component method can process the online data set. The philosophy of the package is described in Guo G. (2018) <doi:10.1080/10485252.2018.1531130>.
Anomaly detection in dynamic, temporal networks. The package oddnet uses a feature-based method to identify anomalies. First, it computes many features for each network. Then it models the features using time series methods. Using time series residuals it detects anomalies. This way, the temporal dependencies are accounted for when identifying anomalies (Kandanaarachchi, Hyndman 2022) <arXiv:2210.07407>.
Processing and analyzing omics data from genomics, transcriptomics, proteomics, and metabolomics platforms. It provides functions for preprocessing, normalization, visualization, and statistical analysis, as well as machine learning algorithms for predictive modeling. omicsTools is an essential tool for researchers working with high-throughput omics data in fields such as biology, bioinformatics, and medicine.The QC-RLSC (quality controlâ based robust LOESS signal correction) algorithm is used for normalization. Dunn et al. (2011) <doi:10.1038/nprot.2011.335>.
This package provides a unified object-oriented framework for numerical optimizers in R. Allows for both minimization and maximization with any optimizer, optimization over more than one function argument, measuring of computation time, setting a time limit for long optimization tasks.
Identify the optimal timing for new treatment initiation during multiple state disease transition, including multistate model fitting, simulation of mean residual lifetime for a given transition state, and estimation of confidence interval. The method is referred to de Wreede, L., Fiocco, M., & Putter, H. (2011) <doi:10.18637/jss.v038.i07>.
Streamlines the post-processing, summarization, and visualization of outbreaker2 output via a suite of helper functions. Facilitates tidy manipulation of posterior samples, integration with case metadata, generation of diagnostic plots and summary statistics.