Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Access to several Numerical Weather Prediction services both in raster format and as a time series for a location. Currently it works with GFS <https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast>, MeteoGalicia <https://www.meteogalicia.gal/web/modelos/threddsIndex.action>, NAM <https://www.ncei.noaa.gov/products/weather-climate-models/north-american-mesoscale>, and RAP <https://www.ncei.noaa.gov/products/weather-climate-models/rapid-refresh-update>.
Inference on stochastic differential models Ornstein-Uhlenbeck or Cox-Ingersoll-Ross, with one or two random effects in the drift function.
This package provides functions are provided for calculating efficiency using multiplier DEA (Data Envelopment Analysis): Measuring the efficiency of decision making units (Charnes et al., 1978 <doi:10.1016/0377-2217(78)90138-8>) and cross efficiency using single and two-phase approach. In addition, it includes some datasets for calculating efficiency and cross efficiency.
This is the core package offering a portal to the many packages universe. It includes functions to help researchers access, work across, and maintain ensembles of datasets on global governance called datacubes.
This package provides basic tools and wrapper functions for computing clusters of instances described by multiple time-to-event censored endpoints. From long-format datasets, where one instance is described by one or more dated records, the main function, `make_state_matrices()`, creates state matrices. Based on these matrices, optimised procedures using the Jaccard distance between instances enable the construction of longitudinal typologies. The package is under active development, with additional tools for graphical representation of typologies planned. For methodological details, see our accompanying paper: `Delord M, Douiri A (2025) <doi:10.1186/s12874-025-02476-7>`.
This package provides functions for cost-optimal control charts with a focus on health care applications. Compared to assumptions in traditional control chart theory, here, we allow random shift sizes, random repair and random sampling times. The package focuses on X-bar charts with a sample size of 1 (representing the monitoring of a single patient at a time). The methods are described in Zempleni et al. (2004) <doi:10.1002/asmb.521>, Dobi and Zempleni (2019) <doi:10.1002/qre.2518> and Dobi and Zempleni (2019) <http://ac.inf.elte.hu/Vol_049_2019/129_49.pdf>.
This package performs treatment allocation in two-arm clinical trials by the maximal procedure described by Berger et al. (2003) <doi:10.1002/sim.1538>. To that end, the algorithm provided by Salama et al. (2008) <doi:10.1002/sim.3014> is implemented.
Implementation of Multiple Comparison Procedures with Modeling (MCP-Mod) procedure with bias-corrected estimators and second-order covariance matrices as described in Diniz, Gallardo and Magalhaes (2023) <doi:10.1002/pst.2303>.
An implementation of a Bayesian sparse group model using spike and slab priors in a regression context. It is designed for regression with a multivariate response variable, but also provides an implementation for univariate response.
This package provides utilities for estimation for the multivariate inverse Gaussian distribution of Minami (2003) <doi:10.1081/STA-120025379>, including random vector generation and explicit estimators of the location vector and scale matrix. The package implements kernel density estimators discussed in Belzile, Desgagnes, Genest and Ouimet (2024) <doi:10.48550/arXiv.2209.04757> for smoothing multivariate data on half-spaces.
Set of utility functions to interact with WeMo Switch', a smart plug that can be remotely controlled via wifi. The provided functions make it possible to turn one or more WeMo Switch plugs on and off in a scriptable fashion. More information about WeMo Switch can be found at <http://www.belkin.com/us/p/P-F7C027/>.
Conducts moderated nonlinear factor analysis (e.g., Curran et al., 2014, <doi:10.1080/00273171.2014.889594>). Regularization methods are implemented for assessing non-invariant items. Currently, the package includes dichotomous items and unidimensional item response models. Extensions will be included in future package versions.
Estimation equations are from a variety of sources and associated error estimation.
Multivariate Surrogate Synchrony ('mvSUSY') estimates the synchrony within datasets that contain more than two time series. mvSUSY was developed from Surrogate Synchrony ('SUSY') with respect to implementing surrogate controls, and extends synchrony estimation to multivariate data. mvSUSY works as described in Meier & Tschacher (2021).
Supports visual interpretation of hierarchical composite endpoints (HCEs). HCEs are complex constructs used as primary endpoints in clinical trials, combining outcomes of different types into ordinal endpoints, in which each patient contributes the most clinically important event (one and only one) to the analysis. See Karpefors M et al. (2022) <doi:10.1177/17407745221134949>.
Mainly for maximum likelihood estimation of nonparametric and semiparametric mixture models, but can also be used for fitting finite mixtures. The algorithms are developed in Wang (2007) <doi:10.1111/j.1467-9868.2007.00583.x> and Wang (2010) <doi:10.1007/s11222-009-9117-z>.
Calculate various functions needed for design and monitoring clinical trials with negative binomial endpoint with variable follow-up. This version has a few changes compared to the previous version 1.0.0, including (1) correct a typo in Type 1 censoring, mtbnull=bnull and (2) restructure the code to account for shape parameter equal to zero, i.e. Poisson scenario.
This package provides functions complementary to packages nicheROVER and SIBER allowing the user to extract Bayesian estimates from data objects created by the packages nicheROVER and SIBER'. Please see the following publications for detailed methods on nicheROVER and SIBER Hansen et al. (2015) <doi:10.1890/14-0235.1>, Jackson et al. (2011) <do i:10.1111/j.1365-2656.2011.01806.x>, and Layman et al. (2007) <doi:10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2>, respectfully.
Two implementations of canonical correlation analysis (CCA) that are based on iterated regression. By choosing the appropriate regression algorithm for each data domain, it is possible to enforce sparsity, non-negativity or other kinds of constraints on the projection vectors. Multiple canonical variables are computed sequentially using a generalized deflation scheme, where the additional correlation not explained by previous variables is maximized. nscancor() is used to analyze paired data from two domains, and has the same interface as cancor() from the stats package (plus some extra parameters). mcancor() is appropriate for analyzing data from three or more domains. See <https://sigg-iten.ch/learningbits/2014/01/20/canonical-correlation-analysis-under-constraints/> and Sigg et al. (2007) <doi:10.1109/MLSP.2007.4414315> for more details.
Renders dynamic network data from networkDynamic objects as movies, interactive animations, or other representations of changing relational structures and attributes.
Nonnegative matrix factorization (NMF) is a technique to factorize a matrix with nonnegative values into the product of two matrices. Covariates are also allowed. Parallel computing is an option to enhance the speed and high-dimensional and large scale (and/or sparse) data are allowed. Relevant papers include: Wang Y. X. and Zhang Y. J. (2012). Nonnegative matrix factorization: A comprehensive review. IEEE Transactions on Knowledge and Data Engineering, 25(6), 1336-1353 <doi:10.1109/TKDE.2012.51> and Kim H. and Park H. (2008). Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM Journal on Matrix Analysis and Applications, 30(2), 713-730 <doi:10.1137/07069239X>.
Color palettes for data visualization inspired by National Parks. Currently contains 15 color schemes and checks for colorblind-friendliness of palettes.
This package provides a graphical display of results from network meta-analysis (NMA). It is suitable for outcomes like odds ratio (OR), risk ratio (RR), risk difference (RD) and standardized mean difference (SMD). It also has an option to visually display and compare the surface under the cumulative ranking (SUCRA) of different treatments.
This package provides streamlined installation for packages from the natverse', a suite of R packages for computational neuroanatomy built on top of the nat NeuroAnatomy Toolbox package. Installation of the complete natverse suite requires a GitHub user account and personal access token GITHUB_PAT'. natmanager will help the end user set this up if necessary.