Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation of Small Area Estimation (SAE) using Hierarchical Bayesian (HB) Method when auxiliary variable measured with error under Beta Distribution. The rjags package is employed to obtain parameter estimates. For the references, see J.N.K & Molina (2015) <doi:10.1002/9781118735855>, Ybarra and Sharon (2008) <doi:10.1093/biomet/asn048>, and Ntzoufras (2009, ISBN-10: 1118210352).
This package implements statistical methods for analyzing the counts of areal data, with a focus on the detection of spatial clusters and clustering. The package has a heavy emphasis on spatial scan methods, which were first introduced by Kulldorff and Nagarwalla (1995) <doi:10.1002/sim.4780140809> and Kulldorff (1997) <doi:10.1080/03610929708831995>.
This package provides a combined slider and numeric input for usage in a Shiny app. The slider and the numeric input are linked together: each one is updated when the other one changes. Many styling properties are customizable (e.g. colors and size).
This package provides functions are provided for the density function, distribution function, quantiles and random number generation for the skew hyperbolic t-distribution. There are also functions that fit the distribution to data. There are functions for the mean, variance, skewness, kurtosis and mode of a given distribution and to calculate moments of any order about any centre. To assess goodness of fit, there are functions to generate a Q-Q plot, a P-P plot and a tail plot.
This package provides an efficient framework for high-dimensional linear and diagonal discriminant analysis with variable selection. The classifier is trained using James-Stein-type shrinkage estimators and predictor variables are ranked using correlation-adjusted t-scores (CAT scores). Variable selection error is controlled using false non-discovery rates or higher criticism.
This package provides functions to produce a fully fledged geo-spatial object extent as a SpatialPolygonsDataFrame'. Also included are functions to generate polygons from raster data using quadmesh techniques, a round number buffered extent, and general spatial-extent and raster-like extent helpers missing from the originating packages. Some latitude-based tools for polar maps are included.
Simplicially constrained regression models for proportions in both sides. The constraint is always that the betas are non-negative and sum to 1. References: Iverson S.J.., Field C., Bowen W.D. and Blanchard W. (2004) "Quantitative Fatty Acid Signature Analysis: A New Method of Estimating Predator Diets". Ecological Monographs, 74(2): 211-235. <doi:10.1890/02-4105>.
We implement functions to estimate and perform sensitivity analysis to unobserved confounding of direct and indirect effects introduced in Lindmark, de Luna and Eriksson (2018) <doi:10.1002/sim.7620> and Lindmark (2022) <doi:10.1007/s10260-021-00611-4>. The estimation and sensitivity analysis are parametric, based on probit and/or linear regression models. Sensitivity analysis is implemented for unobserved confounding of the exposure-mediator, mediator-outcome and exposure-outcome relationships.
S-Core Graph Decomposition algorithm for graphs. This is a method for decomposition of a weighted graph, as proposed by Eidsaa and Almaas (2013) <doi:10.1103/PhysRevE.88.062819>. The high speed and the low memory usage make it suitable for large graphs.
This package provides functions to perform the Sequential Probability Ratio Test (SPRT) for hypothesis testing in Binomial, Poisson and Normal distributions. The package allows users to specify Type I and Type II error probabilities, decision thresholds, and compare null and alternative hypotheses sequentially as data accumulate. It includes visualization tools for plotting the likelihood ratio path and decision boundaries, making it easier to interpret results. The methods are based on Wald (1945) <doi:10.1214/aoms/1177731118>, who introduced the SPRT as one of the earliest and most powerful sequential analysis techniques. This package is useful in quality control, clinical trials, and other applications requiring early decision-making.The term SPRT is an abbreviation and used intentionally.
Visualize and tabulate single-choice, multiple-choice, matrix-style questions from survey data. Includes ability to group cross-tabulations, frequency distributions, and plots by categorical variables and to integrate survey weights. Ideal for quickly uncovering descriptive patterns in survey data.
This package provides a comprehensive framework for quantifying the fundamental thermodynamic parameters of adsorption reactionsâ changes in the standard Gibbs free energy (delta G), enthalpy (delta H), and entropy (delta S)â is essential for understanding the spontaneity, heat effects, and molecular ordering associated with sorption processes. By analysing temperature-dependent equilibrium data, thermodynamic interpretation expands adsorption studies beyond conventional isotherm fitting, offering deeper insight into underlying mechanisms and surfaceâ solute interactions. Such an approach typically involves evaluating equilibrium coefficients across multiple temperatures and non-temperature treatments, deriving thermodynamic parameters using established thermodynamic relationships, and determining delta G as a temperature-specific indicator of adsorption favourability. This analytical pathway is widely applicable across environmental science, soil science, chemistry, materials science, and engineering, where reliable assessment of sorption behaviour is critical for examining contaminant retention, nutrient dynamics, and the behaviour of natural and engineered surfaces. By focusing specifically on thermodynamic inference, this framework complements existing adsorption isotherm-fitting packages such as âAdIsMFâ <https://CRAN.R-project.org/package=AdIsMF> <doi:10.32614/CRAN.package.AdIsMF>, and strengthens the scientific basis for interpreting adsorption energetics in both research and applied contexts. Details can be found in Roy et al. (2025) <doi:10.1007/s11270-025-07963-7>.
An adaptation of classical region/gene-based association analysis techniques to the use of summary statistics (P values and effect sizes) and correlations between genetic variants as input. It is a tool to perform the most popular and efficient gene-based tests using the results of genome-wide association (meta-)analyses without having the original genotypes and phenotypes at hand. See for details: Svishcheva et al (2019) Gene-based association tests using GWAS summary statistics. Bioinformatics. Belonogova et al (2022) SumSTAAR: A flexible framework for gene-based association studies using GWAS summary statistics. PLOS Comp Biol.
This package provides a variety of functions to estimate time-dependent true/false positive rates and AUC curves from a set of censored survival data.
Sequence detector in this package contains a specific automaton model that can be used to learn and detect data and process sequences. Automaton model in this package is capable of learning and tracing sequences. Automaton model can be found in Krleža, Vrdoljak, BrÄ iÄ (2019) <doi:10.1109/ACCESS.2019.2955245>. This research has been partly supported under Competitiveness and Cohesion Operational Programme from the European Regional and Development Fund, as part of the Integrated Anti-Fraud System project no. KK.01.2.1.01.0041. This research has also been partly supported by the European Regional Development Fund under the grant KK.01.1.1.01.0009.
This package provides an application that acts as a GUI for the stm text analysis package.
Self-Consistent Field(SCF) calculation method is one of the most important steps in the calculation methods of quantum chemistry. Ehrenreich, H., & Cohen, M. H. (1959). <doi:10.1103/PhysRev.115.786> However, the most prevailing software in this area, Gaussian''s SCF convergence process is hard to monitor, especially while the job is still running, causing researchers difficulty in knowing whether the oscillation has started or not, wasting time and energy on useless configurations or abandoning the jobs that can actually work. M.J. Frisch, G.W. Trucks, H.B. Schlegel et al. (2016). <https://gaussian.com> SCFMonitor enables Gaussian quantum chemistry calculation software users to easily read the Gaussian .log files and monitor the SCF convergence and geometry optimization process with little effort and clear, beautiful, and clean outputs. It can generate graphs using tidyverse to let users check SCF convergence and geometry optimization processes in real-time. The software supports processing .log files remotely using with rbase::url(). This software is a suitcase for saving time and energy for the researchers, supporting multiple versions of Gaussian'.
The user has the option to utilize the two-dimensional density estimation techniques called smoothed density published by Eilers and Goeman (2004) <doi:10.1093/bioinformatics/btg454>, and pareto density which was evaluated for univariate data by Thrun, Gehlert and Ultsch, 2020 <doi:10.1371/journal.pone.0238835>. Moreover, it provides visualizations of the density estimation in the form of two-dimensional scatter plots in which the points are color-coded based on increasing density. Colors are defined by the one-dimensional clustering technique called 1D distribution cluster algorithm (DDCAL) published by Lux and Rinderle-Ma (2023) <doi:10.1007/s00357-022-09428-6>.
This package provides functionalities for performing stability analysis of genotype by environment interaction (GEI) to identify superior and stable genotypes across diverse environments. It implements Eberhart and Russellâ s ANOVA method (1966)(<doi:10.2135/cropsci1966.0011183X000600010011x>), Finlay and Wilkinsonâ s Joint Linear Regression method (1963) (<doi:10.1071/AR9630742>), Wrickeâ s Ecovalence (1962, 1964), Shuklaâ s stability variance parameter (1972) (<doi:10.1038/hdy.1972.87>), Kangâ s simultaneous selection for high yield and stability (1991) (<doi:10.2134/agronj1991.00021962008300010037x>), Additive Main Effects and Multiplicative Interaction (AMMI) method and Genotype plus Genotypes by Environment (GGE) Interaction methods.
This package provides a unique dataset of historical forest cover across all states in the United States, spanning from 1907 to 2017, along with 1630 as a reference year. This dataset is important for understanding environmental changes and land use trends over time. It includes functionality for easy access of the data.
This package provides functions to estimate, predict and interpolate areal data. For estimation and prediction we assume areal data is an average of an underlying continuous spatial process as in Moraga et al. (2017) <doi:10.1016/j.spasta.2017.04.006>, Johnson et al. (2020) <doi:10.1186/s12942-020-00200-w>, and Wilson and Wakefield (2020) <doi:10.1093/biostatistics/kxy041>. The interpolation methodology is (mostly) based on Goodchild and Lam (1980, ISSN:01652273).
This package implements dictionaries that can be used in the SemNetCleaner package. Also includes several functions aimed at facilitating the text cleaning analysis in the SemNetCleaner package. This package is designed to integrate and update word lists and dictionaries based on each user's individual needs by allowing users to store and save their own dictionaries. Dictionaries can be added to the SemNetDictionaries package by submitting user-defined dictionaries to <https://github.com/AlexChristensen/SemNetDictionaries>.
Functions, classes and methods for time series modelling with ARIMA and related models. The aim of the package is to provide consistent interface for the user. For example, a single function autocorrelations() computes various kinds of theoretical and sample autocorrelations. This is work in progress, see the documentation and vignettes for the current functionality. Function sarima() fits extended multiplicative seasonal ARIMA models with trends, exogenous variables and arbitrary roots on the unit circle, which can be fixed or estimated (for the algebraic basis for this see <doi:10.48550/arXiv.2208.05055>, a paper on the methodology is being prepared).
Parameter estimation for stochastic volatility models using maximum likelihood. The latent log-volatility is integrated out of the likelihood using the Laplace approximation. The models are fitted via TMB (Template Model Builder) (Kristensen, Nielsen, Berg, Skaug, and Bell (2016) <doi:10.18637/jss.v070.i05>).